metadata
base_model: superb/hubert-base-superb-ks
library_name: transformers.js
https://huggingface.co./superb/hubert-base-superb-ks with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @huggingface/transformers
Example: Speech command recognition w/ Xenova/hubert-base-superb-ks
.
import { pipeline } from '@huggingface/transformers';
// Create audio classification pipeline
const classifier = await pipeline('audio-classification', 'Xenova/hubert-base-superb-ks');
// Classify audio
const url = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/speech-commands_down.wav';
const output = await classifier(url, { top_k: 5 });
// [
// { label: 'down', score: 0.9954305291175842 },
// { label: 'go', score: 0.004518700763583183 },
// { label: '_unknown_', score: 0.00005029444946558215 },
// { label: 'no', score: 4.877569494965428e-7 },
// { label: 'stop', score: 5.504634081887616e-9 }
// ]
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).