Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ./datasets/ruwiki-pruned
    type: completion
    field: text
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./models/output

adapter: qlora
lora_model_dir:

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 11
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps:
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Mistral-7B-wikipedia_ru_pruned-0.1_merged

This model is a Q8_0 GGUF merge of WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1 together with mistralai/Mistral-7B-v0.1. It's trained on modified danasone/wikipedia_ru dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1876

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 11
  • eval_batch_size: 11
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.5643 0.0 0
1.012 1.0 1100 1.1876

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0
  • GGUF 0.9.0
Downloads last month
20
GGUF
Model size
7.24B params
Architecture
llama

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged-GGUF

Quantized
(170)
this model

Dataset used to train WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged-GGUF