vivit-b-16x2-finetuned-cctv-surveillance
This model is a fine-tuned version of google/vivit-b-16x2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1478
- Accuracy: 0.9460
- F1: 0.9430
- Recall: 0.9460
- Precision: 0.9454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4176
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
0.9564 | 0.12 | 522 | 0.4417 | 0.8685 | 0.8096 | 0.8685 | 0.7990 |
0.4574 | 1.12 | 1044 | 0.2633 | 0.9131 | 0.9042 | 0.9131 | 0.9269 |
0.421 | 2.12 | 1566 | 0.1875 | 0.9272 | 0.9100 | 0.9272 | 0.9353 |
0.4785 | 3.12 | 2088 | 0.1854 | 0.9249 | 0.9082 | 0.9249 | 0.9140 |
0.3213 | 4.12 | 2610 | 0.1805 | 0.9272 | 0.9125 | 0.9272 | 0.9216 |
0.1465 | 5.12 | 3132 | 0.1733 | 0.9413 | 0.9362 | 0.9413 | 0.9398 |
0.0784 | 6.12 | 3654 | 0.1616 | 0.9437 | 0.9391 | 0.9437 | 0.9434 |
0.2017 | 7.12 | 4176 | 0.1478 | 0.9460 | 0.9430 | 0.9460 | 0.9454 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 75
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for WasuratS/vivit-b-16x2-finetuned-cctv-surveillance
Base model
google/vivit-b-16x2