SegFormer_b2_2

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9606
  • Mean Iou: 0.6207
  • Mean Accuracy: 0.7217
  • Overall Accuracy: 0.9249
  • Accuracy Road: 0.9844
  • Accuracy Sidewalk: 0.8451
  • Accuracy Building: 0.9446
  • Accuracy Wall: 0.5047
  • Accuracy Fence: 0.5505
  • Accuracy Pole: 0.5247
  • Accuracy Traffic light: 0.6721
  • Accuracy Traffic sign: 0.7141
  • Accuracy Vegetation: 0.9260
  • Accuracy Terrain: 0.6527
  • Accuracy Sky: 0.9398
  • Accuracy Person: 0.7681
  • Accuracy Rider: 0.5605
  • Accuracy Car: 0.9182
  • Accuracy Truck: 0.5968
  • Accuracy Bus: 0.7881
  • Accuracy Train: 0.5123
  • Accuracy Motorcycle: 0.5706
  • Accuracy Bicycle: 0.7386
  • Iou Road: 0.9579
  • Iou Sidewalk: 0.7271
  • Iou Building: 0.8669
  • Iou Wall: 0.4481
  • Iou Fence: 0.4465
  • Iou Pole: 0.3530
  • Iou Traffic light: 0.4760
  • Iou Traffic sign: 0.5823
  • Iou Vegetation: 0.8765
  • Iou Terrain: 0.5576
  • Iou Sky: 0.9035
  • Iou Person: 0.5932
  • Iou Rider: 0.3732
  • Iou Car: 0.8710
  • Iou Truck: 0.5520
  • Iou Bus: 0.7234
  • Iou Train: 0.4947
  • Iou Motorcycle: 0.4111
  • Iou Bicycle: 0.5787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road Accuracy Sidewalk Accuracy Building Accuracy Wall Accuracy Fence Accuracy Pole Accuracy Traffic light Accuracy Traffic sign Accuracy Vegetation Accuracy Terrain Accuracy Sky Accuracy Person Accuracy Rider Accuracy Car Accuracy Truck Accuracy Bus Accuracy Train Accuracy Motorcycle Accuracy Bicycle Iou Road Iou Sidewalk Iou Building Iou Wall Iou Fence Iou Pole Iou Traffic light Iou Traffic sign Iou Vegetation Iou Terrain Iou Sky Iou Person Iou Rider Iou Car Iou Truck Iou Bus Iou Train Iou Motorcycle Iou Bicycle
16.6751 2.1290 100 2.9556 0.5273 0.5860 0.9128 0.9832 0.7636 0.9520 0.3754 0.3619 0.3673 0.3866 0.5925 0.9283 0.6073 0.8979 0.7549 0.2971 0.9528 0.3839 0.5714 0.1148 0.1847 0.6577 0.9480 0.6592 0.8484 0.3642 0.3387 0.2441 0.3544 0.5052 0.8692 0.5569 0.8726 0.5470 0.2646 0.8455 0.3804 0.5634 0.1148 0.1829 0.5595
14.9709 4.2581 200 2.3312 0.5652 0.6527 0.9067 0.9790 0.6836 0.9433 0.4577 0.4285 0.4349 0.5329 0.6837 0.9148 0.5706 0.9374 0.7045 0.5310 0.9232 0.4789 0.6725 0.3114 0.4178 0.7961 0.9282 0.5672 0.8545 0.4214 0.3899 0.2939 0.4030 0.5330 0.8612 0.5129 0.8959 0.5318 0.3426 0.8511 0.4733 0.6519 0.3102 0.3764 0.5404
12.5514 6.3871 300 2.2463 0.5818 0.6824 0.9099 0.9828 0.7372 0.9385 0.4104 0.5640 0.4339 0.6397 0.6520 0.9092 0.6454 0.9135 0.7698 0.5094 0.9151 0.5407 0.7326 0.5067 0.4544 0.7098 0.9406 0.6260 0.8504 0.3943 0.4213 0.2925 0.3770 0.5370 0.8563 0.5244 0.8847 0.5331 0.3304 0.8544 0.5204 0.7059 0.4756 0.3823 0.5481
11.8215 8.5161 400 2.1854 0.5677 0.6688 0.9123 0.9798 0.7777 0.9276 0.5374 0.5522 0.4754 0.6585 0.6626 0.9189 0.6628 0.9496 0.7286 0.5013 0.9211 0.4601 0.7198 0.2690 0.3037 0.7014 0.9419 0.6442 0.8586 0.4761 0.4304 0.3157 0.3894 0.5386 0.8601 0.4801 0.8998 0.5440 0.3374 0.8497 0.4551 0.6616 0.2649 0.2853 0.5536
12.7976 10.6452 500 2.1913 0.5681 0.6577 0.9132 0.9788 0.8357 0.9403 0.3648 0.4464 0.5153 0.5844 0.6711 0.9064 0.5650 0.9370 0.7434 0.5706 0.9340 0.4380 0.5866 0.5737 0.2666 0.6390 0.9501 0.6739 0.8517 0.3396 0.3917 0.3219 0.4339 0.5206 0.8594 0.5195 0.8937 0.5428 0.3339 0.8485 0.4335 0.5700 0.5384 0.2364 0.5346
13.2234 12.7742 600 2.1208 0.5839 0.6746 0.9159 0.9840 0.8034 0.9334 0.4014 0.5319 0.4315 0.5946 0.6512 0.9280 0.6488 0.9267 0.6349 0.5981 0.9371 0.4992 0.7449 0.4463 0.3991 0.7225 0.9498 0.6801 0.8532 0.3739 0.4087 0.3091 0.4380 0.5276 0.8633 0.5504 0.8880 0.5185 0.3530 0.8580 0.4889 0.7079 0.4403 0.3343 0.5509
9.7371 14.9032 700 2.1398 0.5802 0.6915 0.9116 0.9799 0.8241 0.9162 0.5241 0.5775 0.5446 0.6767 0.6958 0.9263 0.5810 0.9162 0.6330 0.5151 0.8971 0.5783 0.8181 0.3773 0.4174 0.7405 0.9472 0.6630 0.8494 0.4527 0.4216 0.3189 0.4272 0.5349 0.8626 0.4880 0.8874 0.5101 0.3422 0.8515 0.5549 0.6742 0.3667 0.3440 0.5263
8.4735 17.0215 800 2.1760 0.5756 0.6897 0.9129 0.9871 0.7981 0.9380 0.5897 0.6268 0.4616 0.6864 0.6777 0.8896 0.6343 0.9445 0.6620 0.6210 0.8976 0.5353 0.7562 0.3340 0.2657 0.7991 0.9503 0.6854 0.8490 0.4706 0.3476 0.3187 0.4378 0.5301 0.8558 0.5319 0.8957 0.5317 0.3490 0.8504 0.5175 0.6891 0.3327 0.2495 0.5435
7.8868 19.1505 900 2.0991 0.6117 0.7249 0.9189 0.9799 0.8504 0.9266 0.5342 0.6147 0.5391 0.6287 0.6909 0.9071 0.7484 0.9448 0.7911 0.5599 0.9310 0.6343 0.7929 0.5248 0.4726 0.7015 0.9576 0.7113 0.8583 0.4561 0.4635 0.3363 0.4626 0.5534 0.8615 0.4779 0.8956 0.5629 0.3528 0.8729 0.5908 0.7386 0.5084 0.4023 0.5594
9.4082 21.2796 1000 2.0767 0.5897 0.6879 0.9169 0.9831 0.8115 0.9418 0.4610 0.5540 0.5098 0.6356 0.6613 0.9094 0.6206 0.9356 0.7755 0.6345 0.9301 0.5099 0.7109 0.4752 0.4408 0.5701 0.9521 0.6884 0.8547 0.4137 0.4308 0.3356 0.4546 0.5351 0.8659 0.5416 0.8965 0.5601 0.3526 0.8540 0.4773 0.6614 0.4609 0.3696 0.4994
6.9498 23.4086 1100 2.1655 0.5859 0.6856 0.9165 0.9772 0.8440 0.9373 0.4009 0.6115 0.4860 0.5818 0.6818 0.9242 0.5435 0.9505 0.7132 0.5791 0.9152 0.4764 0.7693 0.4355 0.5341 0.6645 0.9516 0.6906 0.8536 0.3534 0.4365 0.3254 0.4377 0.5631 0.8669 0.4874 0.8886 0.5631 0.3553 0.8587 0.4529 0.6921 0.4264 0.3786 0.5496
7.1755 25.5376 1200 2.0846 0.5910 0.6962 0.9183 0.9765 0.8536 0.9404 0.5186 0.5747 0.5408 0.6658 0.6923 0.9122 0.5719 0.9314 0.7621 0.5426 0.9261 0.5853 0.7995 0.2802 0.4453 0.7091 0.9536 0.6891 0.8609 0.4342 0.4450 0.3391 0.4558 0.5683 0.8679 0.5108 0.8998 0.5627 0.3550 0.8639 0.5502 0.6730 0.2792 0.3643 0.5565
6.4426 27.6667 1300 2.0718 0.6111 0.7120 0.9207 0.9847 0.8011 0.9443 0.4555 0.5963 0.5093 0.6059 0.7045 0.9149 0.6177 0.9418 0.7521 0.5612 0.9359 0.5108 0.7845 0.6642 0.5255 0.7186 0.9539 0.6946 0.8617 0.4206 0.4598 0.3410 0.4472 0.5656 0.8704 0.5400 0.9032 0.5576 0.3591 0.8706 0.4810 0.7120 0.6166 0.4026 0.5532
7.9571 29.7957 1400 2.1007 0.6176 0.7312 0.9220 0.9852 0.8278 0.9265 0.4403 0.6432 0.5272 0.6923 0.7098 0.9338 0.6698 0.9471 0.7186 0.6121 0.9187 0.5939 0.7617 0.7162 0.5277 0.7412 0.9586 0.7228 0.8621 0.4078 0.4189 0.3411 0.4602 0.5732 0.8725 0.5544 0.9018 0.5617 0.3598 0.8695 0.5311 0.6980 0.6668 0.4134 0.5598
7.0214 31.9247 1500 2.0496 0.6164 0.7258 0.9226 0.9819 0.8393 0.9301 0.5485 0.5417 0.5299 0.6742 0.7202 0.9290 0.7253 0.9414 0.7524 0.5288 0.9318 0.5999 0.8061 0.5190 0.5778 0.7141 0.9578 0.7141 0.8628 0.4576 0.4463 0.3425 0.4592 0.5755 0.8727 0.5648 0.8974 0.5800 0.3549 0.8754 0.5577 0.7254 0.5025 0.4217 0.5440
7.6246 34.0430 1600 2.0286 0.6136 0.7167 0.9223 0.9861 0.8199 0.9443 0.5169 0.5326 0.5077 0.6671 0.7165 0.9199 0.6715 0.9394 0.6962 0.5626 0.9206 0.6453 0.7967 0.4386 0.5843 0.7517 0.9552 0.7119 0.8610 0.4590 0.4396 0.3443 0.4611 0.5784 0.8721 0.5778 0.8948 0.5691 0.3693 0.8707 0.5520 0.7157 0.4265 0.4399 0.5592
8.3015 36.1720 1700 2.0353 0.6179 0.7146 0.9237 0.9838 0.8350 0.9425 0.5130 0.5482 0.5338 0.6419 0.7140 0.9251 0.6892 0.9382 0.7216 0.5111 0.9258 0.6673 0.7389 0.6655 0.3349 0.7471 0.9571 0.7172 0.8667 0.4434 0.4582 0.3534 0.4672 0.5753 0.8749 0.5397 0.9001 0.5732 0.3670 0.8700 0.5908 0.6889 0.6197 0.3053 0.5727
6.6871 38.3011 1800 2.0154 0.6197 0.7235 0.9232 0.9853 0.8336 0.9387 0.5135 0.5580 0.5278 0.6452 0.7185 0.9232 0.6777 0.9465 0.7381 0.5634 0.9209 0.6325 0.7569 0.6470 0.5012 0.7192 0.9559 0.7157 0.8662 0.4477 0.4471 0.3452 0.4562 0.5791 0.8745 0.5668 0.9031 0.5781 0.3611 0.8668 0.5610 0.6953 0.6048 0.3805 0.5695
6.08 40.4301 1900 1.9764 0.6243 0.7265 0.9251 0.9837 0.8531 0.9402 0.5178 0.5974 0.5184 0.6617 0.6958 0.9265 0.6695 0.9388 0.7550 0.5007 0.9286 0.6250 0.7855 0.6083 0.5623 0.7346 0.9592 0.7311 0.8671 0.4530 0.4658 0.3482 0.4672 0.5793 0.8760 0.5586 0.8995 0.5776 0.3573 0.8744 0.5566 0.7267 0.5774 0.4128 0.5741
6.2931 42.5591 2000 1.9826 0.6251 0.7327 0.9242 0.9827 0.8623 0.9415 0.5115 0.5476 0.5138 0.6720 0.7138 0.9219 0.6876 0.9317 0.7541 0.5426 0.9236 0.5970 0.7784 0.6505 0.6230 0.7656 0.9588 0.7279 0.8642 0.4530 0.4526 0.3484 0.4763 0.5815 0.8742 0.5669 0.8976 0.5785 0.3623 0.8725 0.5541 0.7159 0.6131 0.4113 0.5689
7.358 44.6882 2100 1.9920 0.6200 0.7234 0.9252 0.9825 0.8570 0.9464 0.5359 0.5386 0.5277 0.6540 0.7065 0.9213 0.6690 0.9441 0.7394 0.5612 0.9279 0.6127 0.7689 0.5046 0.5876 0.7602 0.9600 0.7354 0.8655 0.4612 0.4359 0.3527 0.4766 0.5838 0.8746 0.5658 0.9032 0.5937 0.3755 0.8728 0.5446 0.7052 0.4878 0.4108 0.5756
6.1954 46.8172 2200 1.9624 0.6220 0.7258 0.9248 0.9841 0.8487 0.9439 0.5136 0.5489 0.5316 0.6693 0.7274 0.9223 0.6580 0.9433 0.7663 0.5655 0.9195 0.6042 0.7952 0.5396 0.5698 0.7396 0.9582 0.7289 0.8669 0.4539 0.4452 0.3528 0.4768 0.5826 0.8755 0.5567 0.9042 0.5920 0.3709 0.8711 0.5540 0.7234 0.5178 0.4115 0.5767
6.1774 48.9462 2300 1.9606 0.6207 0.7217 0.9249 0.9844 0.8451 0.9446 0.5047 0.5505 0.5247 0.6721 0.7141 0.9260 0.6527 0.9398 0.7681 0.5605 0.9182 0.5968 0.7881 0.5123 0.5706 0.7386 0.9579 0.7271 0.8669 0.4481 0.4465 0.3530 0.4760 0.5823 0.8765 0.5576 0.9035 0.5932 0.3732 0.8710 0.5520 0.7234 0.4947 0.4111 0.5787

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Vrjb/SegFormer_b2_2

Finetuned
(4)
this model