Vrjb commited on
Commit
a4e9634
·
verified ·
1 Parent(s): 9d44896

Model save

Browse files
Files changed (3) hide show
  1. README.md +61 -68
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -3,8 +3,6 @@ library_name: transformers
3
  license: other
4
  base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
5
  tags:
6
- - vision
7
- - image-segmentation
8
  - generated_from_trainer
9
  model-index:
10
  - name: SegFormer_b2_
@@ -16,50 +14,50 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # SegFormer_b2_
18
 
19
- This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on the Cityscapes dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 1.9394
22
- - Mean Iou: 0.6247
23
- - Mean Accuracy: 0.7299
24
- - Overall Accuracy: 0.9233
25
- - Accuracy Road: 0.9836
26
- - Accuracy Sidewalk: 0.8334
27
- - Accuracy Building: 0.9387
28
- - Accuracy Wall: 0.5535
29
- - Accuracy Fence: 0.5674
30
- - Accuracy Pole: 0.5316
31
- - Accuracy Traffic light: 0.6698
32
- - Accuracy Traffic sign: 0.6901
33
- - Accuracy Vegetation: 0.9239
34
  - Accuracy Terrain: 0.6285
35
- - Accuracy Sky: 0.9506
36
- - Accuracy Person: 0.7416
37
- - Accuracy Rider: 0.5474
38
- - Accuracy Car: 0.9271
39
- - Accuracy Truck: 0.6458
40
- - Accuracy Bus: 0.7972
41
- - Accuracy Train: 0.6846
42
- - Accuracy Motorcycle: 0.5459
43
- - Accuracy Bicycle: 0.7077
44
- - Iou Road: 0.9563
45
- - Iou Sidewalk: 0.7156
46
- - Iou Building: 0.8667
47
- - Iou Wall: 0.4851
48
- - Iou Fence: 0.4486
49
- - Iou Pole: 0.3497
50
- - Iou Traffic light: 0.4737
51
- - Iou Traffic sign: 0.5639
52
- - Iou Vegetation: 0.8710
53
- - Iou Terrain: 0.5384
54
- - Iou Sky: 0.9042
55
- - Iou Person: 0.5739
56
- - Iou Rider: 0.3597
57
- - Iou Car: 0.8723
58
- - Iou Truck: 0.5765
59
- - Iou Bus: 0.6862
60
- - Iou Train: 0.6377
61
- - Iou Motorcycle: 0.4203
62
- - Iou Bicycle: 0.5696
63
 
64
  ## Model description
65
 
@@ -78,7 +76,7 @@ More information needed
78
  ### Training hyperparameters
79
 
80
  The following hyperparameters were used during training:
81
- - learning_rate: 0.0001
82
  - train_batch_size: 16
83
  - eval_batch_size: 16
84
  - seed: 42
@@ -94,29 +92,24 @@ The following hyperparameters were used during training:
94
 
95
  | Training Loss | Epoch | Step | Accuracy Bicycle | Accuracy Building | Accuracy Bus | Accuracy Car | Accuracy Fence | Accuracy Motorcycle | Accuracy Person | Accuracy Pole | Accuracy Rider | Accuracy Road | Accuracy Sidewalk | Accuracy Sky | Accuracy Terrain | Accuracy Traffic light | Accuracy Traffic sign | Accuracy Train | Accuracy Truck | Accuracy Vegetation | Accuracy Wall | Iou Bicycle | Iou Building | Iou Bus | Iou Car | Iou Fence | Iou Motorcycle | Iou Person | Iou Pole | Iou Rider | Iou Road | Iou Sidewalk | Iou Sky | Iou Terrain | Iou Traffic light | Iou Traffic sign | Iou Train | Iou Truck | Iou Vegetation | Iou Wall | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
96
  |:-------------:|:-------:|:----:|:----------------:|:-----------------:|:------------:|:------------:|:--------------:|:-------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:-----------------:|:------------:|:----------------:|:----------------------:|:---------------------:|:--------------:|:--------------:|:-------------------:|:-------------:|:-----------:|:------------:|:-------:|:-------:|:---------:|:--------------:|:----------:|:--------:|:---------:|:--------:|:------------:|:-------:|:-----------:|:-----------------:|:----------------:|:---------:|:---------:|:--------------:|:--------:|:---------------:|:-------------:|:--------:|:----------------:|
97
- | 19.4865 | 2.1290 | 100 | 0.6760 | 0.9595 | 0.6477 | 0.9704 | 0.4505 | 0.1910 | 0.7935 | 0.4306 | 0.2263 | 0.9779 | 0.8829 | 0.8935 | 0.6355 | 0.3591 | 0.5761 | 0.4981 | 0.4556 | 0.9358 | 0.4775 | 0.5832 | 0.8589 | 0.6213 | 0.8596 | 0.4151 | 0.1888 | 0.5894 | 0.3086 | 0.2113 | 0.9647 | 0.7523 | 0.8745 | 0.5754 | 0.3375 | 0.5248 | 0.4826 | 0.4506 | 0.8800 | 0.4587 | 3.6075 | 0.6336 | 0.5756 | 0.9251 |
98
- | 14.9818 | 4.2581 | 200 | 0.7567 | 0.9313 | 0.6464 | 0.9389 | 0.5175 | 0.2690 | 0.7244 | 0.4230 | 0.3868 | 0.9810 | 0.7244 | 0.9358 | 0.5898 | 0.5458 | 0.6784 | 0.3124 | 0.4566 | 0.9169 | 0.4688 | 0.5633 | 0.8534 | 0.6322 | 0.8468 | 0.4453 | 0.2576 | 0.5478 | 0.2504 | 0.3156 | 0.9365 | 0.6019 | 0.8950 | 0.5168 | 0.4225 | 0.4789 | 0.3110 | 0.4531 | 0.8656 | 0.4450 | 2.4551 | 0.6423 | 0.5599 | 0.9085 |
99
- | 12.8497 | 6.3871 | 300 | 0.7841 | 0.9297 | 0.7192 | 0.9196 | 0.5112 | 0.3392 | 0.7300 | 0.4176 | 0.5774 | 0.9783 | 0.7591 | 0.9284 | 0.6359 | 0.6403 | 0.6451 | 0.4652 | 0.5414 | 0.9207 | 0.5152 | 0.5406 | 0.8545 | 0.6950 | 0.8493 | 0.4189 | 0.3168 | 0.5295 | 0.2799 | 0.3377 | 0.9390 | 0.6199 | 0.8913 | 0.5214 | 0.4012 | 0.5196 | 0.4495 | 0.5292 | 0.8633 | 0.4692 | 2.2342 | 0.6820 | 0.5803 | 0.9102 |
100
- | 10.1248 | 8.5161 | 400 | 0.6868 | 0.9161 | 0.7117 | 0.9243 | 0.5337 | 0.3373 | 0.7113 | 0.4116 | 0.4864 | 0.9766 | 0.6904 | 0.9158 | 0.6209 | 0.7034 | 0.6768 | 0.2975 | 0.4268 | 0.9234 | 0.4671 | 0.5360 | 0.8470 | 0.6855 | 0.8320 | 0.4207 | 0.2977 | 0.5282 | 0.2729 | 0.3348 | 0.9254 | 0.5580 | 0.8837 | 0.4890 | 0.3556 | 0.5091 | 0.2968 | 0.4231 | 0.8540 | 0.4329 | 2.2664 | 0.6536 | 0.5517 | 0.9015 |
101
- | 8.1288 | 10.6452 | 500 | 0.7852 | 0.9292 | 0.7670 | 0.9114 | 0.5181 | 0.2987 | 0.6637 | 0.4807 | 0.4590 | 0.9707 | 0.7914 | 0.9271 | 0.6678 | 0.6191 | 0.6648 | 0.5326 | 0.6058 | 0.9192 | 0.4718 | 0.5610 | 0.8523 | 0.7124 | 0.8535 | 0.4347 | 0.2818 | 0.5278 | 0.3054 | 0.3217 | 0.9354 | 0.6086 | 0.8888 | 0.5244 | 0.4309 | 0.5441 | 0.5212 | 0.5776 | 0.8577 | 0.4293 | 2.1501 | 0.6833 | 0.5878 | 0.9085 |
102
- | 8.3238 | 12.7742 | 600 | 0.7818 | 0.9235 | 0.7698 | 0.9120 | 0.5285 | 0.4973 | 0.7194 | 0.4843 | 0.5705 | 0.9766 | 0.8115 | 0.9576 | 0.6124 | 0.6642 | 0.6829 | 0.5547 | 0.5998 | 0.9153 | 0.5458 | 0.5611 | 0.8558 | 0.7056 | 0.8627 | 0.4342 | 0.3823 | 0.5099 | 0.3111 | 0.3336 | 0.9433 | 0.6461 | 0.8838 | 0.5145 | 0.4324 | 0.5324 | 0.5270 | 0.5528 | 0.8631 | 0.4859 | 2.1170 | 0.7109 | 0.5967 | 0.9125 |
103
- | 8.9039 | 14.9032 | 700 | 0.7615 | 0.9340 | 0.7759 | 0.9214 | 0.5726 | 0.4982 | 0.6710 | 0.4779 | 0.5724 | 0.9794 | 0.7971 | 0.9481 | 0.6864 | 0.6014 | 0.6676 | 0.4047 | 0.5534 | 0.9095 | 0.5584 | 0.5569 | 0.8570 | 0.7187 | 0.8624 | 0.4536 | 0.3817 | 0.5312 | 0.3190 | 0.3369 | 0.9449 | 0.6444 | 0.8945 | 0.5294 | 0.4543 | 0.5439 | 0.4023 | 0.5256 | 0.8613 | 0.4829 | 2.0632 | 0.6995 | 0.5948 | 0.9140 |
104
- | 6.8474 | 17.0215 | 800 | 0.7639 | 0.9241 | 0.7635 | 0.9098 | 0.6152 | 0.4688 | 0.6985 | 0.4950 | 0.5632 | 0.9788 | 0.8365 | 0.9374 | 0.6416 | 0.6235 | 0.6679 | 0.6057 | 0.5879 | 0.9304 | 0.6211 | 0.5415 | 0.8613 | 0.7171 | 0.8582 | 0.4533 | 0.3791 | 0.5266 | 0.3222 | 0.3344 | 0.9510 | 0.6856 | 0.8965 | 0.5284 | 0.4566 | 0.5588 | 0.5792 | 0.5514 | 0.8670 | 0.5213 | 2.0679 | 0.7175 | 0.6100 | 0.9176 |
105
- | 7.4347 | 19.5376 | 900 | 0.7122 | 0.9277 | 0.7490 | 0.9283 | 0.5929 | 0.3980 | 0.7050 | 0.5311 | 0.7026 | 0.9793 | 0.8403 | 0.9349 | 0.6278 | 0.6670 | 0.7038 | 0.6460 | 0.5609 | 0.9171 | 0.5750 | 0.5373 | 0.8599 | 0.7067 | 0.8658 | 0.4666 | 0.3392 | 0.5207 | 0.3327 | 0.3307 | 0.9518 | 0.6903 | 0.8948 | 0.5374 | 0.4542 | 0.5535 | 0.6120 | 0.5235 | 0.8669 | 0.5069 | 2.0968 | 0.7210 | 0.6079 | 0.9177 |
106
- | 7.5228 | 21.6667 | 1000 | 0.6753 | 0.9294 | 0.8054 | 0.9299 | 0.5103 | 0.5224 | 0.7150 | 0.5414 | 0.5393 | 0.9822 | 0.8177 | 0.9422 | 0.6357 | 0.6628 | 0.7064 | 0.6089 | 0.6381 | 0.9243 | 0.6196 | 0.5381 | 0.8616 | 0.7231 | 0.8662 | 0.4515 | 0.4082 | 0.5591 | 0.3312 | 0.3474 | 0.9518 | 0.6919 | 0.8971 | 0.5222 | 0.4581 | 0.5556 | 0.5864 | 0.5795 | 0.8689 | 0.5222 | 2.0338 | 0.7214 | 0.6168 | 0.9194 |
107
- | 6.7143 | 23.7957 | 1100 | 0.7380 | 0.9360 | 0.8039 | 0.9211 | 0.6212 | 0.5869 | 0.7588 | 0.5156 | 0.5796 | 0.9811 | 0.8255 | 0.9444 | 0.6144 | 0.6595 | 0.6831 | 0.6266 | 0.6627 | 0.9084 | 0.6149 | 0.5441 | 0.8623 | 0.7019 | 0.8666 | 0.4182 | 0.4132 | 0.5791 | 0.3375 | 0.3562 | 0.9533 | 0.6969 | 0.8952 | 0.5126 | 0.4605 | 0.5551 | 0.5989 | 0.5738 | 0.8642 | 0.5203 | 2.1118 | 0.7359 | 0.6163 | 0.9190 |
108
- | 7.5104 | 25.9247 | 1200 | 0.6948 | 0.9288 | 0.8005 | 0.9219 | 0.6146 | 0.4523 | 0.7635 | 0.5523 | 0.5294 | 0.9805 | 0.8326 | 0.9384 | 0.6626 | 0.6950 | 0.6912 | 0.6974 | 0.5996 | 0.9226 | 0.5694 | 0.5740 | 0.8618 | 0.6997 | 0.8695 | 0.4462 | 0.3672 | 0.5465 | 0.3416 | 0.3485 | 0.9542 | 0.7017 | 0.8994 | 0.5250 | 0.4618 | 0.5565 | 0.6384 | 0.5587 | 0.8707 | 0.5081 | 2.0335 | 0.7288 | 0.6173 | 0.9200 |
109
- | 7.861 | 28.0430 | 1300 | 0.7469 | 0.9369 | 0.8086 | 0.9207 | 0.5746 | 0.5260 | 0.7496 | 0.5465 | 0.5180 | 0.9818 | 0.8352 | 0.9433 | 0.6926 | 0.6455 | 0.7201 | 0.6200 | 0.6283 | 0.9077 | 0.6043 | 0.5726 | 0.8610 | 0.6940 | 0.8701 | 0.4558 | 0.4178 | 0.5486 | 0.3437 | 0.3578 | 0.9554 | 0.7092 | 0.8990 | 0.5346 | 0.4603 | 0.5598 | 0.5936 | 0.5681 | 0.8657 | 0.5123 | 2.0020 | 0.7319 | 0.6200 | 0.9204 |
110
- | 7.0394 | 30.1720 | 1400 | 0.6941 | 0.9330 | 0.8556 | 0.9345 | 0.5390 | 0.4986 | 0.7452 | 0.5509 | 0.5745 | 0.9800 | 0.8528 | 0.9552 | 0.6988 | 0.7051 | 0.6983 | 0.6298 | 0.6150 | 0.9283 | 0.5627 | 0.5736 | 0.8676 | 0.7108 | 0.8749 | 0.4634 | 0.4036 | 0.5609 | 0.3516 | 0.3656 | 0.9579 | 0.7202 | 0.9034 | 0.5488 | 0.4546 | 0.5710 | 0.6060 | 0.5695 | 0.8737 | 0.5042 | 2.0133 | 0.7343 | 0.6253 | 0.9240 |
111
- | 6.8533 | 32.3011 | 1500 | 0.7715 | 0.9388 | 0.7811 | 0.9163 | 0.5650 | 0.4690 | 0.7304 | 0.5132 | 0.5895 | 0.9831 | 0.8465 | 0.9467 | 0.6617 | 0.6596 | 0.6647 | 0.6119 | 0.6297 | 0.9265 | 0.5474 | 0.5743 | 0.8661 | 0.7119 | 0.8702 | 0.4352 | 0.3808 | 0.5582 | 0.3447 | 0.3609 | 0.9577 | 0.7217 | 0.9050 | 0.5461 | 0.4737 | 0.5609 | 0.5972 | 0.5612 | 0.8724 | 0.48 | 2.0117 | 0.7238 | 0.6199 | 0.9233 |
112
- | 7.2427 | 34.4301 | 1600 | 0.7191 | 0.9364 | 0.7781 | 0.9209 | 0.5210 | 0.4928 | 0.7391 | 0.5203 | 0.6457 | 0.9820 | 0.8448 | 0.9487 | 0.6476 | 0.6672 | 0.6934 | 0.6828 | 0.6149 | 0.9215 | 0.6113 | 0.5561 | 0.8643 | 0.7053 | 0.8697 | 0.4414 | 0.3841 | 0.5563 | 0.3425 | 0.3524 | 0.9558 | 0.7124 | 0.9030 | 0.5375 | 0.4699 | 0.5551 | 0.6438 | 0.5513 | 0.8710 | 0.5214 | 1.9949 | 0.7309 | 0.6207 | 0.9220 |
113
- | 6.7778 | 36.5591 | 1700 | 0.7269 | 0.9389 | 0.8062 | 0.9264 | 0.5671 | 0.4382 | 0.7281 | 0.5163 | 0.5285 | 0.9824 | 0.8465 | 0.9505 | 0.6464 | 0.6739 | 0.6610 | 0.6729 | 0.6407 | 0.9316 | 0.5398 | 0.5776 | 0.8677 | 0.7070 | 0.8728 | 0.4520 | 0.3677 | 0.5765 | 0.3456 | 0.3626 | 0.9570 | 0.7182 | 0.9069 | 0.5520 | 0.4582 | 0.5598 | 0.6331 | 0.5808 | 0.8740 | 0.4879 | 1.9785 | 0.7222 | 0.6241 | 0.9243 |
114
- | 6.5763 | 38.6882 | 1800 | 0.7485 | 0.9385 | 0.7854 | 0.9264 | 0.6005 | 0.4531 | 0.7187 | 0.5171 | 0.5683 | 0.9817 | 0.8446 | 0.9419 | 0.6652 | 0.6515 | 0.6864 | 0.6653 | 0.6521 | 0.9286 | 0.5884 | 0.5713 | 0.8662 | 0.6953 | 0.8732 | 0.4482 | 0.3809 | 0.5727 | 0.3480 | 0.3725 | 0.9580 | 0.7212 | 0.9040 | 0.5537 | 0.4705 | 0.5706 | 0.6333 | 0.5789 | 0.8723 | 0.5145 | 1.9691 | 0.7296 | 0.6266 | 0.9240 |
115
- | 6.5878 | 40.8172 | 1900 | 0.7381 | 0.9350 | 0.7873 | 0.9238 | 0.5780 | 0.5450 | 0.7328 | 0.5148 | 0.5550 | 0.9835 | 0.8388 | 0.9479 | 0.6593 | 0.6625 | 0.6837 | 0.6830 | 0.6526 | 0.9247 | 0.5516 | 0.5734 | 0.8657 | 0.6889 | 0.8721 | 0.4468 | 0.4075 | 0.5674 | 0.3451 | 0.3605 | 0.9563 | 0.7123 | 0.9014 | 0.5452 | 0.4680 | 0.5641 | 0.6428 | 0.5564 | 0.8702 | 0.4884 | 1.9603 | 0.7315 | 0.6228 | 0.9227 |
116
- | 6.2246 | 42.9462 | 2000 | 0.6965 | 0.9435 | 0.7914 | 0.9296 | 0.5240 | 0.5602 | 0.7195 | 0.5298 | 0.5844 | 0.9834 | 0.8383 | 0.9389 | 0.6232 | 0.6611 | 0.6819 | 0.6379 | 0.6310 | 0.9229 | 0.5725 | 0.5719 | 0.8653 | 0.6732 | 0.8720 | 0.4420 | 0.4200 | 0.5698 | 0.3492 | 0.3700 | 0.9570 | 0.7176 | 0.9014 | 0.5463 | 0.4744 | 0.5614 | 0.6100 | 0.5576 | 0.8706 | 0.4980 | 1.9342 | 0.7247 | 0.6225 | 0.9234 |
117
- | 7.4045 | 45.0645 | 2100 | 0.7076 | 0.9380 | 0.8054 | 0.9286 | 0.5505 | 0.4858 | 0.7431 | 0.5202 | 0.5815 | 0.9837 | 0.8338 | 0.9423 | 0.6323 | 0.6712 | 0.6895 | 0.6615 | 0.6309 | 0.9318 | 0.5456 | 0.5740 | 0.8682 | 0.6932 | 0.8736 | 0.4476 | 0.3952 | 0.5701 | 0.3504 | 0.3631 | 0.9568 | 0.7172 | 0.9038 | 0.5471 | 0.4733 | 0.5649 | 0.6260 | 0.5743 | 0.8724 | 0.4843 | 1.9209 | 0.7254 | 0.6240 | 0.9240 |
118
- | 6.6521 | 47.1935 | 2200 | 0.7241 | 0.9349 | 0.7896 | 0.9258 | 0.5411 | 0.5575 | 0.7431 | 0.5364 | 0.5836 | 0.9841 | 0.8297 | 0.9467 | 0.6298 | 0.6757 | 0.6985 | 0.6633 | 0.6485 | 0.9278 | 0.5435 | 0.5685 | 0.8664 | 0.6826 | 0.8722 | 0.4472 | 0.4163 | 0.5700 | 0.3488 | 0.3622 | 0.9558 | 0.7126 | 0.9040 | 0.5401 | 0.4692 | 0.5633 | 0.6280 | 0.5708 | 0.8716 | 0.4826 | 1.9400 | 0.7307 | 0.6228 | 0.9229 |
119
- | 6.383 | 49.9677 | 2300 | 1.9394 | 0.6247 | 0.7299 | 0.9233 | 0.9836 | 0.8334 | 0.9387 | 0.5535 | 0.5674 | 0.5316 | 0.6698 | 0.6901 | 0.9239 | 0.6285 | 0.9506 | 0.7416 | 0.5474 | 0.9271 | 0.6458 | 0.7972 | 0.6846 | 0.5459 | 0.7077 | 0.9563 | 0.7156 | 0.8667 | 0.4851 | 0.4486 | 0.3497 | 0.4737 | 0.5639 | 0.8710 | 0.5384 | 0.9042 | 0.5739 | 0.3597 | 0.8723 | 0.5765 | 0.6862 | 0.6377 | 0.4203 | 0.5696 |
120
 
121
 
122
  ### Framework versions
 
3
  license: other
4
  base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
5
  tags:
 
 
6
  - generated_from_trainer
7
  model-index:
8
  - name: SegFormer_b2_
 
14
 
15
  # SegFormer_b2_
16
 
17
+ This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.9619
20
+ - Mean Iou: 0.6350
21
+ - Mean Accuracy: 0.7337
22
+ - Overall Accuracy: 0.9277
23
+ - Accuracy Road: 0.9852
24
+ - Accuracy Sidewalk: 0.8497
25
+ - Accuracy Building: 0.9358
26
+ - Accuracy Wall: 0.5532
27
+ - Accuracy Fence: 0.5198
28
+ - Accuracy Pole: 0.5455
29
+ - Accuracy Traffic light: 0.6870
30
+ - Accuracy Traffic sign: 0.7070
31
+ - Accuracy Vegetation: 0.9414
32
  - Accuracy Terrain: 0.6285
33
+ - Accuracy Sky: 0.9488
34
+ - Accuracy Person: 0.7732
35
+ - Accuracy Rider: 0.5306
36
+ - Accuracy Car: 0.9299
37
+ - Accuracy Truck: 0.6569
38
+ - Accuracy Bus: 0.7685
39
+ - Accuracy Train: 0.6389
40
+ - Accuracy Motorcycle: 0.6015
41
+ - Accuracy Bicycle: 0.7396
42
+ - Iou Road: 0.9605
43
+ - Iou Sidewalk: 0.7409
44
+ - Iou Building: 0.8722
45
+ - Iou Wall: 0.4867
46
+ - Iou Fence: 0.4444
47
+ - Iou Pole: 0.3637
48
+ - Iou Traffic light: 0.4816
49
+ - Iou Traffic sign: 0.5829
50
+ - Iou Vegetation: 0.8786
51
+ - Iou Terrain: 0.5591
52
+ - Iou Sky: 0.9110
53
+ - Iou Person: 0.6011
54
+ - Iou Rider: 0.3690
55
+ - Iou Car: 0.8721
56
+ - Iou Truck: 0.5861
57
+ - Iou Bus: 0.7113
58
+ - Iou Train: 0.6222
59
+ - Iou Motorcycle: 0.4337
60
+ - Iou Bicycle: 0.5882
61
 
62
  ## Model description
63
 
 
76
  ### Training hyperparameters
77
 
78
  The following hyperparameters were used during training:
79
+ - learning_rate: 0.0002
80
  - train_batch_size: 16
81
  - eval_batch_size: 16
82
  - seed: 42
 
92
 
93
  | Training Loss | Epoch | Step | Accuracy Bicycle | Accuracy Building | Accuracy Bus | Accuracy Car | Accuracy Fence | Accuracy Motorcycle | Accuracy Person | Accuracy Pole | Accuracy Rider | Accuracy Road | Accuracy Sidewalk | Accuracy Sky | Accuracy Terrain | Accuracy Traffic light | Accuracy Traffic sign | Accuracy Train | Accuracy Truck | Accuracy Vegetation | Accuracy Wall | Iou Bicycle | Iou Building | Iou Bus | Iou Car | Iou Fence | Iou Motorcycle | Iou Person | Iou Pole | Iou Rider | Iou Road | Iou Sidewalk | Iou Sky | Iou Terrain | Iou Traffic light | Iou Traffic sign | Iou Train | Iou Truck | Iou Vegetation | Iou Wall | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
94
  |:-------------:|:-------:|:----:|:----------------:|:-----------------:|:------------:|:------------:|:--------------:|:-------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:-----------------:|:------------:|:----------------:|:----------------------:|:---------------------:|:--------------:|:--------------:|:-------------------:|:-------------:|:-----------:|:------------:|:-------:|:-------:|:---------:|:--------------:|:----------:|:--------:|:---------:|:--------:|:------------:|:-------:|:-----------:|:-----------------:|:----------------:|:---------:|:---------:|:--------------:|:--------:|:---------------:|:-------------:|:--------:|:----------------:|
95
+ | 6.8123 | 2.1290 | 100 | 0.6984 | 0.9338 | 0.8122 | 0.9277 | 0.5514 | 0.5692 | 0.7411 | 0.5353 | 0.5676 | 0.9832 | 0.8382 | 0.9456 | 0.6402 | 0.6671 | 0.6933 | 0.6673 | 0.6179 | 0.9322 | 0.5422 | 0.5707 | 0.8673 | 0.7055 | 0.8721 | 0.4429 | 0.4264 | 0.5663 | 0.3490 | 0.3608 | 0.9568 | 0.7169 | 0.9046 | 0.5479 | 0.4801 | 0.5658 | 0.6310 | 0.5609 | 0.8722 | 0.4836 | 1.9557 | 0.7297 | 0.6253 | 0.9235 |
96
+ | 5.5587 | 4.2581 | 200 | 0.7256 | 0.9379 | 0.7677 | 0.9250 | 0.5431 | 0.5447 | 0.7266 | 0.5255 | 0.5780 | 0.9827 | 0.8446 | 0.9559 | 0.6846 | 0.6513 | 0.6983 | 0.7100 | 0.6409 | 0.9234 | 0.5933 | 0.5811 | 0.8659 | 0.6798 | 0.8731 | 0.4480 | 0.4214 | 0.5739 | 0.3477 | 0.3697 | 0.9569 | 0.7187 | 0.9050 | 0.5508 | 0.4799 | 0.5715 | 0.6571 | 0.5627 | 0.8720 | 0.5035 | 1.9616 | 0.7347 | 0.6284 | 0.9237 |
97
+ | 6.8729 | 6.3871 | 300 | 0.7543 | 0.9334 | 0.7977 | 0.9311 | 0.5201 | 0.4788 | 0.7494 | 0.5370 | 0.5464 | 0.9821 | 0.8502 | 0.9495 | 0.6429 | 0.6814 | 0.6879 | 0.6860 | 0.6341 | 0.9325 | 0.5513 | 0.5783 | 0.8654 | 0.7097 | 0.8738 | 0.4383 | 0.3938 | 0.5814 | 0.3495 | 0.3657 | 0.9587 | 0.7267 | 0.9026 | 0.5385 | 0.4817 | 0.5703 | 0.6481 | 0.5721 | 0.8733 | 0.4796 | 2.0128 | 0.7287 | 0.6267 | 0.9243 |
98
+ | 6.3252 | 8.5161 | 400 | 0.6642 | 0.9384 | 0.7729 | 0.9231 | 0.5929 | 0.4225 | 0.7956 | 0.5462 | 0.5785 | 0.9811 | 0.8564 | 0.9407 | 0.6866 | 0.6477 | 0.7079 | 0.7334 | 0.6215 | 0.9150 | 0.5680 | 0.5609 | 0.8657 | 0.6914 | 0.8719 | 0.4471 | 0.3463 | 0.5605 | 0.3529 | 0.3504 | 0.9575 | 0.7210 | 0.9026 | 0.5582 | 0.4800 | 0.5663 | 0.6632 | 0.5712 | 0.8702 | 0.4953 | 2.0218 | 0.7312 | 0.6228 | 0.9227 |
99
+ | 6.3303 | 10.6452 | 500 | 0.7177 | 0.9441 | 0.8494 | 0.9181 | 0.5622 | 0.5395 | 0.7004 | 0.5211 | 0.5410 | 0.9835 | 0.8381 | 0.9392 | 0.6200 | 0.6394 | 0.6761 | 0.6616 | 0.6112 | 0.9303 | 0.4396 | 0.5813 | 0.8632 | 0.6945 | 0.8714 | 0.4555 | 0.4227 | 0.5589 | 0.3463 | 0.3686 | 0.9574 | 0.7176 | 0.9037 | 0.5494 | 0.4400 | 0.5567 | 0.6219 | 0.5686 | 0.8730 | 0.4040 | 2.0294 | 0.7175 | 0.6187 | 0.9231 |
100
+ | 6.1549 | 12.7742 | 600 | 0.7508 | 0.9573 | 0.7949 | 0.9217 | 0.5561 | 0.6094 | 0.7175 | 0.4992 | 0.3451 | 0.9822 | 0.8461 | 0.9377 | 0.6346 | 0.6769 | 0.6496 | 0.6472 | 0.5465 | 0.8897 | 0.5458 | 0.5683 | 0.8503 | 0.6773 | 0.8694 | 0.4253 | 0.4378 | 0.5759 | 0.3383 | 0.2860 | 0.9581 | 0.7156 | 0.8943 | 0.5439 | 0.4632 | 0.5551 | 0.6143 | 0.5262 | 0.8543 | 0.4745 | 2.1125 | 0.7110 | 0.6120 | 0.9192 |
101
+ | 7.3083 | 14.9032 | 700 | 0.7100 | 0.9398 | 0.8242 | 0.9160 | 0.5903 | 0.6395 | 0.7402 | 0.5186 | 0.5756 | 0.9850 | 0.8476 | 0.9476 | 0.6635 | 0.6793 | 0.7236 | 0.6976 | 0.7515 | 0.9247 | 0.5481 | 0.5762 | 0.8665 | 0.7249 | 0.8740 | 0.4511 | 0.4341 | 0.5749 | 0.3518 | 0.3727 | 0.9589 | 0.7281 | 0.9005 | 0.5730 | 0.4763 | 0.5694 | 0.6395 | 0.6627 | 0.8741 | 0.4982 | 2.0793 | 0.7486 | 0.6372 | 0.9252 |
102
+ | 6.576 | 17.0215 | 800 | 0.7703 | 0.9409 | 0.7932 | 0.9190 | 0.5249 | 0.5203 | 0.7513 | 0.5143 | 0.5919 | 0.9821 | 0.8585 | 0.9530 | 0.6539 | 0.6359 | 0.6807 | 0.6271 | 0.6034 | 0.9322 | 0.4577 | 0.5755 | 0.8684 | 0.6832 | 0.8710 | 0.4431 | 0.3965 | 0.5864 | 0.3538 | 0.3662 | 0.9589 | 0.7242 | 0.9068 | 0.5658 | 0.4663 | 0.5700 | 0.5985 | 0.5316 | 0.8743 | 0.4129 | 2.0442 | 0.7216 | 0.6186 | 0.9247 |
103
+ | 6.1906 | 19.1505 | 900 | 0.6906 | 0.9467 | 0.8470 | 0.9224 | 0.5170 | 0.4961 | 0.7813 | 0.5332 | 0.5720 | 0.9847 | 0.8472 | 0.9447 | 0.6608 | 0.7185 | 0.7102 | 0.4138 | 0.5740 | 0.9189 | 0.4473 | 0.5695 | 0.8643 | 0.6888 | 0.8751 | 0.4150 | 0.3911 | 0.5883 | 0.3517 | 0.3777 | 0.9604 | 0.7371 | 0.9050 | 0.5748 | 0.4555 | 0.5705 | 0.4080 | 0.5304 | 0.8708 | 0.4035 | 2.0855 | 0.7119 | 0.6072 | 0.9242 |
104
+ | 7.41 | 21.2796 | 1000 | 0.7659 | 0.9404 | 0.7758 | 0.9210 | 0.5056 | 0.5361 | 0.7416 | 0.5777 | 0.6048 | 0.9830 | 0.8693 | 0.9475 | 0.6439 | 0.6821 | 0.7203 | 0.6634 | 0.6090 | 0.9171 | 0.4731 | 0.5747 | 0.8631 | 0.7228 | 0.8708 | 0.4197 | 0.4150 | 0.5772 | 0.3588 | 0.3654 | 0.9599 | 0.7358 | 0.9058 | 0.5547 | 0.4700 | 0.5752 | 0.6282 | 0.5567 | 0.8737 | 0.4317 | 2.0099 | 0.7304 | 0.6242 | 0.9239 |
105
+ | 5.5115 | 23.4086 | 1100 | 0.7564 | 0.9446 | 0.7604 | 0.9148 | 0.6497 | 0.5345 | 0.7515 | 0.5375 | 0.5970 | 0.9812 | 0.8744 | 0.9407 | 0.6428 | 0.6566 | 0.6718 | 0.7071 | 0.6244 | 0.9197 | 0.4471 | 0.5694 | 0.8659 | 0.7115 | 0.8685 | 0.4391 | 0.4190 | 0.5891 | 0.3549 | 0.3717 | 0.9597 | 0.7354 | 0.9072 | 0.5640 | 0.4857 | 0.5729 | 0.6665 | 0.5744 | 0.8741 | 0.4060 | 2.0197 | 0.7322 | 0.6282 | 0.9244 |
106
+ | 7.0305 | 25.5376 | 1200 | 0.7267 | 0.9504 | 0.7640 | 0.9260 | 0.5518 | 0.5643 | 0.7378 | 0.5290 | 0.5458 | 0.9839 | 0.8701 | 0.9395 | 0.6378 | 0.6620 | 0.6745 | 0.7368 | 0.6248 | 0.9167 | 0.5230 | 0.5713 | 0.8643 | 0.7156 | 0.8710 | 0.4571 | 0.4256 | 0.5882 | 0.3598 | 0.3668 | 0.9612 | 0.7406 | 0.9042 | 0.5554 | 0.4727 | 0.5726 | 0.6853 | 0.5750 | 0.8728 | 0.4675 | 1.9816 | 0.7297 | 0.6330 | 0.9258 |
107
+ | 5.2368 | 27.6667 | 1300 | 0.7217 | 0.9374 | 0.7948 | 0.9332 | 0.5699 | 0.5587 | 0.7443 | 0.5263 | 0.5490 | 0.9843 | 0.8599 | 0.9396 | 0.6362 | 0.6413 | 0.7024 | 0.7470 | 0.6401 | 0.9401 | 0.5039 | 0.5817 | 0.8697 | 0.7120 | 0.8732 | 0.4659 | 0.4127 | 0.5929 | 0.3582 | 0.3795 | 0.9610 | 0.7402 | 0.9039 | 0.5671 | 0.4764 | 0.5836 | 0.6913 | 0.5853 | 0.8782 | 0.4550 | 1.9868 | 0.7332 | 0.6362 | 0.9274 |
108
+ | 6.2172 | 29.7957 | 1400 | 0.7696 | 0.9371 | 0.7514 | 0.9329 | 0.5485 | 0.5655 | 0.7389 | 0.5560 | 0.5959 | 0.9858 | 0.8414 | 0.9414 | 0.6290 | 0.7111 | 0.6842 | 0.7097 | 0.5908 | 0.9342 | 0.5966 | 0.5896 | 0.8689 | 0.7058 | 0.8719 | 0.4575 | 0.4462 | 0.5838 | 0.3593 | 0.3561 | 0.9610 | 0.7383 | 0.9079 | 0.5570 | 0.4571 | 0.5676 | 0.6666 | 0.5487 | 0.8797 | 0.5196 | 2.0414 | 0.7379 | 0.6338 | 0.9268 |
109
+ | 5.8238 | 31.9247 | 1500 | 0.7155 | 0.9423 | 0.7631 | 0.9290 | 0.6080 | 0.5156 | 0.7468 | 0.5452 | 0.6095 | 0.9852 | 0.8504 | 0.9454 | 0.6533 | 0.6628 | 0.6916 | 0.6605 | 0.6024 | 0.9245 | 0.5715 | 0.5826 | 0.8678 | 0.7121 | 0.8697 | 0.4594 | 0.4105 | 0.5992 | 0.3578 | 0.3635 | 0.9609 | 0.7403 | 0.9070 | 0.5617 | 0.4771 | 0.5806 | 0.6362 | 0.5521 | 0.8765 | 0.5023 | 2.0376 | 0.7328 | 0.6325 | 0.9264 |
110
+ | 5.5947 | 34.0430 | 1600 | 0.7463 | 0.9465 | 0.8115 | 0.9198 | 0.5313 | 0.5075 | 0.7525 | 0.5320 | 0.5378 | 0.9834 | 0.8629 | 0.9352 | 0.6095 | 0.6516 | 0.6914 | 0.6838 | 0.6637 | 0.9242 | 0.5233 | 0.5755 | 0.8663 | 0.6922 | 0.8715 | 0.4515 | 0.4040 | 0.5862 | 0.3583 | 0.3677 | 0.9593 | 0.7355 | 0.9035 | 0.5453 | 0.4746 | 0.5805 | 0.6466 | 0.5881 | 0.8729 | 0.4686 | 1.9786 | 0.7271 | 0.6288 | 0.9253 |
111
+ | 6.8136 | 36.1720 | 1700 | 0.7539 | 0.9418 | 0.7692 | 0.9278 | 0.5493 | 0.5517 | 0.7664 | 0.5399 | 0.5394 | 0.9841 | 0.8605 | 0.9423 | 0.6269 | 0.6547 | 0.6952 | 0.6466 | 0.6442 | 0.9287 | 0.5673 | 0.5902 | 0.8702 | 0.7151 | 0.8725 | 0.4427 | 0.4200 | 0.5972 | 0.3619 | 0.3700 | 0.9602 | 0.7376 | 0.9088 | 0.5491 | 0.4791 | 0.5807 | 0.6186 | 0.5809 | 0.8764 | 0.4945 | 2.0119 | 0.7311 | 0.6329 | 0.9268 |
112
+ | 4.8895 | 39.0860 | 1800 | 1.9619 | 0.6350 | 0.7337 | 0.9277 | 0.9852 | 0.8497 | 0.9358 | 0.5532 | 0.5198 | 0.5455 | 0.6870 | 0.7070 | 0.9414 | 0.6285 | 0.9488 | 0.7732 | 0.5306 | 0.9299 | 0.6569 | 0.7685 | 0.6389 | 0.6015 | 0.7396 | 0.9605 | 0.7409 | 0.8722 | 0.4867 | 0.4444 | 0.3637 | 0.4816 | 0.5829 | 0.8786 | 0.5591 | 0.9110 | 0.6011 | 0.3690 | 0.8721 | 0.5861 | 0.7113 | 0.6222 | 0.4337 | 0.5882 |
 
 
 
 
 
113
 
114
 
115
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3eac781c2102d64f3ed8ebcfd80a47b03d5e5d671a0caa193da495ce267c4846
3
  size 109496316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d7270696edd88097201489d7edd2f661a6bacbb8c235128cf9b1281816ee7b
3
  size 109496316
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13e06dbc447fa2f9f0b13ad506d6608c93cec2297bec3f8aaf1c7d44bdbfe269
3
  size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4daa28f0d33f952f29a6f4ea4df0f1de95f195e5fdbdd6ff60ebf7eed59904
3
  size 5368