SegFormer_b2_

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9619
  • Mean Iou: 0.6350
  • Mean Accuracy: 0.7337
  • Overall Accuracy: 0.9277
  • Accuracy Road: 0.9852
  • Accuracy Sidewalk: 0.8497
  • Accuracy Building: 0.9358
  • Accuracy Wall: 0.5532
  • Accuracy Fence: 0.5198
  • Accuracy Pole: 0.5455
  • Accuracy Traffic light: 0.6870
  • Accuracy Traffic sign: 0.7070
  • Accuracy Vegetation: 0.9414
  • Accuracy Terrain: 0.6285
  • Accuracy Sky: 0.9488
  • Accuracy Person: 0.7732
  • Accuracy Rider: 0.5306
  • Accuracy Car: 0.9299
  • Accuracy Truck: 0.6569
  • Accuracy Bus: 0.7685
  • Accuracy Train: 0.6389
  • Accuracy Motorcycle: 0.6015
  • Accuracy Bicycle: 0.7396
  • Iou Road: 0.9605
  • Iou Sidewalk: 0.7409
  • Iou Building: 0.8722
  • Iou Wall: 0.4867
  • Iou Fence: 0.4444
  • Iou Pole: 0.3637
  • Iou Traffic light: 0.4816
  • Iou Traffic sign: 0.5829
  • Iou Vegetation: 0.8786
  • Iou Terrain: 0.5591
  • Iou Sky: 0.9110
  • Iou Person: 0.6011
  • Iou Rider: 0.3690
  • Iou Car: 0.8721
  • Iou Truck: 0.5861
  • Iou Bus: 0.7113
  • Iou Train: 0.6222
  • Iou Motorcycle: 0.4337
  • Iou Bicycle: 0.5882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Bicycle Accuracy Building Accuracy Bus Accuracy Car Accuracy Fence Accuracy Motorcycle Accuracy Person Accuracy Pole Accuracy Rider Accuracy Road Accuracy Sidewalk Accuracy Sky Accuracy Terrain Accuracy Traffic light Accuracy Traffic sign Accuracy Train Accuracy Truck Accuracy Vegetation Accuracy Wall Iou Bicycle Iou Building Iou Bus Iou Car Iou Fence Iou Motorcycle Iou Person Iou Pole Iou Rider Iou Road Iou Sidewalk Iou Sky Iou Terrain Iou Traffic light Iou Traffic sign Iou Train Iou Truck Iou Vegetation Iou Wall Validation Loss Mean Accuracy Mean Iou Overall Accuracy
6.8123 2.1290 100 0.6984 0.9338 0.8122 0.9277 0.5514 0.5692 0.7411 0.5353 0.5676 0.9832 0.8382 0.9456 0.6402 0.6671 0.6933 0.6673 0.6179 0.9322 0.5422 0.5707 0.8673 0.7055 0.8721 0.4429 0.4264 0.5663 0.3490 0.3608 0.9568 0.7169 0.9046 0.5479 0.4801 0.5658 0.6310 0.5609 0.8722 0.4836 1.9557 0.7297 0.6253 0.9235
5.5587 4.2581 200 0.7256 0.9379 0.7677 0.9250 0.5431 0.5447 0.7266 0.5255 0.5780 0.9827 0.8446 0.9559 0.6846 0.6513 0.6983 0.7100 0.6409 0.9234 0.5933 0.5811 0.8659 0.6798 0.8731 0.4480 0.4214 0.5739 0.3477 0.3697 0.9569 0.7187 0.9050 0.5508 0.4799 0.5715 0.6571 0.5627 0.8720 0.5035 1.9616 0.7347 0.6284 0.9237
6.8729 6.3871 300 0.7543 0.9334 0.7977 0.9311 0.5201 0.4788 0.7494 0.5370 0.5464 0.9821 0.8502 0.9495 0.6429 0.6814 0.6879 0.6860 0.6341 0.9325 0.5513 0.5783 0.8654 0.7097 0.8738 0.4383 0.3938 0.5814 0.3495 0.3657 0.9587 0.7267 0.9026 0.5385 0.4817 0.5703 0.6481 0.5721 0.8733 0.4796 2.0128 0.7287 0.6267 0.9243
6.3252 8.5161 400 0.6642 0.9384 0.7729 0.9231 0.5929 0.4225 0.7956 0.5462 0.5785 0.9811 0.8564 0.9407 0.6866 0.6477 0.7079 0.7334 0.6215 0.9150 0.5680 0.5609 0.8657 0.6914 0.8719 0.4471 0.3463 0.5605 0.3529 0.3504 0.9575 0.7210 0.9026 0.5582 0.4800 0.5663 0.6632 0.5712 0.8702 0.4953 2.0218 0.7312 0.6228 0.9227
6.3303 10.6452 500 0.7177 0.9441 0.8494 0.9181 0.5622 0.5395 0.7004 0.5211 0.5410 0.9835 0.8381 0.9392 0.6200 0.6394 0.6761 0.6616 0.6112 0.9303 0.4396 0.5813 0.8632 0.6945 0.8714 0.4555 0.4227 0.5589 0.3463 0.3686 0.9574 0.7176 0.9037 0.5494 0.4400 0.5567 0.6219 0.5686 0.8730 0.4040 2.0294 0.7175 0.6187 0.9231
6.1549 12.7742 600 0.7508 0.9573 0.7949 0.9217 0.5561 0.6094 0.7175 0.4992 0.3451 0.9822 0.8461 0.9377 0.6346 0.6769 0.6496 0.6472 0.5465 0.8897 0.5458 0.5683 0.8503 0.6773 0.8694 0.4253 0.4378 0.5759 0.3383 0.2860 0.9581 0.7156 0.8943 0.5439 0.4632 0.5551 0.6143 0.5262 0.8543 0.4745 2.1125 0.7110 0.6120 0.9192
7.3083 14.9032 700 0.7100 0.9398 0.8242 0.9160 0.5903 0.6395 0.7402 0.5186 0.5756 0.9850 0.8476 0.9476 0.6635 0.6793 0.7236 0.6976 0.7515 0.9247 0.5481 0.5762 0.8665 0.7249 0.8740 0.4511 0.4341 0.5749 0.3518 0.3727 0.9589 0.7281 0.9005 0.5730 0.4763 0.5694 0.6395 0.6627 0.8741 0.4982 2.0793 0.7486 0.6372 0.9252
6.576 17.0215 800 0.7703 0.9409 0.7932 0.9190 0.5249 0.5203 0.7513 0.5143 0.5919 0.9821 0.8585 0.9530 0.6539 0.6359 0.6807 0.6271 0.6034 0.9322 0.4577 0.5755 0.8684 0.6832 0.8710 0.4431 0.3965 0.5864 0.3538 0.3662 0.9589 0.7242 0.9068 0.5658 0.4663 0.5700 0.5985 0.5316 0.8743 0.4129 2.0442 0.7216 0.6186 0.9247
6.1906 19.1505 900 0.6906 0.9467 0.8470 0.9224 0.5170 0.4961 0.7813 0.5332 0.5720 0.9847 0.8472 0.9447 0.6608 0.7185 0.7102 0.4138 0.5740 0.9189 0.4473 0.5695 0.8643 0.6888 0.8751 0.4150 0.3911 0.5883 0.3517 0.3777 0.9604 0.7371 0.9050 0.5748 0.4555 0.5705 0.4080 0.5304 0.8708 0.4035 2.0855 0.7119 0.6072 0.9242
7.41 21.2796 1000 0.7659 0.9404 0.7758 0.9210 0.5056 0.5361 0.7416 0.5777 0.6048 0.9830 0.8693 0.9475 0.6439 0.6821 0.7203 0.6634 0.6090 0.9171 0.4731 0.5747 0.8631 0.7228 0.8708 0.4197 0.4150 0.5772 0.3588 0.3654 0.9599 0.7358 0.9058 0.5547 0.4700 0.5752 0.6282 0.5567 0.8737 0.4317 2.0099 0.7304 0.6242 0.9239
5.5115 23.4086 1100 0.7564 0.9446 0.7604 0.9148 0.6497 0.5345 0.7515 0.5375 0.5970 0.9812 0.8744 0.9407 0.6428 0.6566 0.6718 0.7071 0.6244 0.9197 0.4471 0.5694 0.8659 0.7115 0.8685 0.4391 0.4190 0.5891 0.3549 0.3717 0.9597 0.7354 0.9072 0.5640 0.4857 0.5729 0.6665 0.5744 0.8741 0.4060 2.0197 0.7322 0.6282 0.9244
7.0305 25.5376 1200 0.7267 0.9504 0.7640 0.9260 0.5518 0.5643 0.7378 0.5290 0.5458 0.9839 0.8701 0.9395 0.6378 0.6620 0.6745 0.7368 0.6248 0.9167 0.5230 0.5713 0.8643 0.7156 0.8710 0.4571 0.4256 0.5882 0.3598 0.3668 0.9612 0.7406 0.9042 0.5554 0.4727 0.5726 0.6853 0.5750 0.8728 0.4675 1.9816 0.7297 0.6330 0.9258
5.2368 27.6667 1300 0.7217 0.9374 0.7948 0.9332 0.5699 0.5587 0.7443 0.5263 0.5490 0.9843 0.8599 0.9396 0.6362 0.6413 0.7024 0.7470 0.6401 0.9401 0.5039 0.5817 0.8697 0.7120 0.8732 0.4659 0.4127 0.5929 0.3582 0.3795 0.9610 0.7402 0.9039 0.5671 0.4764 0.5836 0.6913 0.5853 0.8782 0.4550 1.9868 0.7332 0.6362 0.9274
6.2172 29.7957 1400 0.7696 0.9371 0.7514 0.9329 0.5485 0.5655 0.7389 0.5560 0.5959 0.9858 0.8414 0.9414 0.6290 0.7111 0.6842 0.7097 0.5908 0.9342 0.5966 0.5896 0.8689 0.7058 0.8719 0.4575 0.4462 0.5838 0.3593 0.3561 0.9610 0.7383 0.9079 0.5570 0.4571 0.5676 0.6666 0.5487 0.8797 0.5196 2.0414 0.7379 0.6338 0.9268
5.8238 31.9247 1500 0.7155 0.9423 0.7631 0.9290 0.6080 0.5156 0.7468 0.5452 0.6095 0.9852 0.8504 0.9454 0.6533 0.6628 0.6916 0.6605 0.6024 0.9245 0.5715 0.5826 0.8678 0.7121 0.8697 0.4594 0.4105 0.5992 0.3578 0.3635 0.9609 0.7403 0.9070 0.5617 0.4771 0.5806 0.6362 0.5521 0.8765 0.5023 2.0376 0.7328 0.6325 0.9264
5.5947 34.0430 1600 0.7463 0.9465 0.8115 0.9198 0.5313 0.5075 0.7525 0.5320 0.5378 0.9834 0.8629 0.9352 0.6095 0.6516 0.6914 0.6838 0.6637 0.9242 0.5233 0.5755 0.8663 0.6922 0.8715 0.4515 0.4040 0.5862 0.3583 0.3677 0.9593 0.7355 0.9035 0.5453 0.4746 0.5805 0.6466 0.5881 0.8729 0.4686 1.9786 0.7271 0.6288 0.9253
6.8136 36.1720 1700 0.7539 0.9418 0.7692 0.9278 0.5493 0.5517 0.7664 0.5399 0.5394 0.9841 0.8605 0.9423 0.6269 0.6547 0.6952 0.6466 0.6442 0.9287 0.5673 0.5902 0.8702 0.7151 0.8725 0.4427 0.4200 0.5972 0.3619 0.3700 0.9602 0.7376 0.9088 0.5491 0.4791 0.5807 0.6186 0.5809 0.8764 0.4945 2.0119 0.7311 0.6329 0.9268
4.8895 39.0860 1800 1.9619 0.6350 0.7337 0.9277 0.9852 0.8497 0.9358 0.5532 0.5198 0.5455 0.6870 0.7070 0.9414 0.6285 0.9488 0.7732 0.5306 0.9299 0.6569 0.7685 0.6389 0.6015 0.7396 0.9605 0.7409 0.8722 0.4867 0.4444 0.3637 0.4816 0.5829 0.8786 0.5591 0.9110 0.6011 0.3690 0.8721 0.5861 0.7113 0.6222 0.4337 0.5882

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
85
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Vrjb/SegFormer_b2_

Finetuned
(5)
this model