hw-midm-7B-nsmc / README.md
Violet0203's picture
Update README.md
9d15ef3
|
raw
history blame
6.7 kB
---
library_name: peft
base_model: KT-AI/midm-bitext-S-7B-inst-v1
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### ๋„ค์ด๋ฒ„ ์˜ํ™” ๋ฆฌ๋ทฐํ…์ŠคํŠธ(NSMC)๋ฐ์ดํ„ฐ์…‹์„ ํ”„๋กฌํฌํŠธ์— ํฌํ•จํ•˜์—ฌ ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜๋ฉด
-- "๊ธ์ •" ๋˜๋Š” "๋ถ€์ •" ์ด๋ผ๊ณ  ์˜ˆ์ธกํ•˜๋Š” ํ…์ŠคํŠธ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ
#### ์‹คํ—˜๋‚ด์šฉ: train dataset์˜ 2100๊ฐœ ์ƒ˜ํ”Œ,valid dataset์˜ 1000๊ฐœ ์ƒ˜ํ”Œ์„ ๋ฏธ์„ธํŠœ๋‹์— ์‚ฌ์šฉ
- ์ผ๋ฐ˜์ ์œผ๋กœ 1900์Šคํ…์—์„œ๋Š” ์ •ํ™•๋„ accuracy๊ฐ€ 80ํ›„๋ฐ˜๋Œ€(์•ฝ 85%)๊ฐ€ ๋„์ถœ, 2000์Šคํ…์ด์ƒ๋ถ€ํ„ฐ 90%์— ๊ทผ์ ‘ํ•œ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค.
- seq length๋ฅผ 312๋กœ ์ค„์ธ ๊ฒฐ๊ณผ, seq length 384๋ณด๋‹ค ํ›ˆ๋ จ์‹œ๊ฐ„trainer.train์ด ์ ๊ฒŒ ๊ฑธ๋ฆฌ์ง€๋งŒ ์ •ํ™•๋„๋„ ๊ฐ์†Œ
- gradient_accumulation steps์„ 2๋กœ ์„ค์ •ํ•˜์—ฌ ๋ฏธ๋‹ˆ๋ฐฐ์น˜๋ฅผ ํ†ตํ•ด ๊ตฌํ•ด์ง„ gradient๊ฐ’์„ n step๋™์•ˆ
global gradient์— ๋ˆ„์ ์‹œํ‚จ ํ›„ ํ•œ๋ฒˆ์— ์—…๋Žƒ->๋ฐฐ์น˜๋ฅผ ์—ฌ๋Ÿฌ๊ฐœ ์‚ฌ์šฉํ•œ ํšจ๊ณผ๋ฅผ ์ฃผ๋Š” ๋“ฑ ๋…ธ๋ ฅํ•จ.
##Accuracy ์ •ํ™•๋„ ๋ถ„์„
###valid_dataset(test dataset 1000๊ฐœ์— ๋Œ€ํ•œ ์ •ํ™•๋„)
*********************************
| | TP | TN |
|:-------------:|:-----:|:----:|
| PP | 438 | 70 |
| PN | 29 | 463 |
|Accuracy | - |0.901
*********************************
***์ •ํ™•๋„:0.901
*********************************
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.1
- PEFT 0.7.0