How to use :

!pip install peft accelerate bitsandbytes
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the configuration for the fine-tuned model
model_id = "Vijayendra/QST-Mistral-7b"
config = PeftConfig.from_pretrained(model_id)

# Load the base model and the fine-tuned model
base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(base_model, model_id)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Prepare the input for inference
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

instruction = "Explain the significance of cyclic operators in machine learning theory."
input_text = "Provide a detailed explanation suitable for a beginner in quantum machine learning."
formatted_prompt = prompt.format(instruction, input_text, "")

# Tokenize the input
inputs = tokenizer(
    formatted_prompt,
    return_tensors="pt",
    max_length=2048,
    truncation=True
).to("cuda")

# Run inference
model.to("cuda")
outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_k=50
)

# Decode and print the output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Downloads last month
96
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vijayendra/QST-Mistral-7b

Adapter
(64)
this model

Dataset used to train Vijayendra/QST-Mistral-7b