vit-base-patch16-224-finetuned-brain-tumor-classification

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4348
  • Accuracy: 0.8905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1659 0.9897 48 2.4060 0.4086
1.8381 2.0 97 1.2904 0.6772
1.0781 2.9897 145 0.9211 0.7573
0.8049 4.0 194 0.7274 0.8036
0.6091 4.9897 242 0.6427 0.8330
0.4985 6.0 291 0.5519 0.8510
0.4077 6.9897 339 0.4921 0.8792
0.3583 8.0 388 0.4756 0.8826
0.3292 8.9897 436 0.4472 0.8883
0.338 9.8969 480 0.4348 0.8905

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Veda0718/vit-base-patch16-224-finetuned-brain-tumor-classification

Finetuned
(542)
this model

Evaluation results