Edit model card

speaker-segmentation-fine-tuned-callhome-jpn

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6518
  • Der: 0.2003
  • False Alarm: 0.0204
  • Missed Detection: 0.0126
  • Confusion: 0.1673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.6084 1.0 157 0.6361 0.2140 0.0209 0.0101 0.1829
0.5157 2.0 314 0.6039 0.2079 0.0213 0.0101 0.1765
0.4718 3.0 471 0.6117 0.2094 0.0218 0.0101 0.1775
0.5069 4.0 628 0.6086 0.2129 0.0215 0.0101 0.1813
0.47 5.0 785 0.5974 0.2040 0.0215 0.0101 0.1724
0.4539 6.0 942 0.6047 0.2065 0.0219 0.0102 0.1745
0.4325 7.0 1099 0.5944 0.2009 0.0214 0.0104 0.1691
0.434 8.0 1256 0.6110 0.2059 0.0214 0.0105 0.1740
0.4199 9.0 1413 0.6045 0.2050 0.0212 0.0106 0.1733
0.4479 10.0 1570 0.6101 0.1990 0.0212 0.0105 0.1673
0.392 11.0 1727 0.6106 0.2003 0.0208 0.0107 0.1687
0.3858 12.0 1884 0.6279 0.2009 0.0211 0.0108 0.1689
0.3686 13.0 2041 0.6279 0.1976 0.0209 0.0114 0.1653
0.3963 14.0 2198 0.6263 0.1991 0.0211 0.0112 0.1668
0.3521 15.0 2355 0.6313 0.1970 0.0206 0.0116 0.1649
0.348 16.0 2512 0.6307 0.2001 0.0204 0.0123 0.1673
0.3668 17.0 2669 0.6425 0.2012 0.0206 0.0124 0.1682
0.3592 18.0 2826 0.6328 0.2001 0.0205 0.0124 0.1672
0.3485 19.0 2983 0.6489 0.2006 0.0202 0.0128 0.1675
0.3529 20.0 3140 0.6501 0.2007 0.0206 0.0123 0.1678
0.35 21.0 3297 0.6473 0.2003 0.0205 0.0124 0.1674
0.3549 22.0 3454 0.6518 0.2003 0.0205 0.0126 0.1672
0.3439 23.0 3611 0.6523 0.2002 0.0204 0.0127 0.1671
0.3495 24.0 3768 0.6527 0.2002 0.0204 0.0126 0.1672
0.34 25.0 3925 0.6518 0.2003 0.0204 0.0126 0.1673

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for VarunUOB/speaker-segmentation-fine-tuned-callhome-jpn

Finetuned
(12)
this model

Dataset used to train VarunUOB/speaker-segmentation-fine-tuned-callhome-jpn