See axolotl config
axolotl version: 0.8.0.dev0
base_model: ./Qwen_QwQ-32B/
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
trust_remote_code: true
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: tokenizer_default
datasets:
- path: Undi95/QwQ-dataset
type: chat_template
chat_template: tokenizer_default
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant"]
system: ["system"]
tool: ["tool"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 256
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: qwq-rp
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.1
out
This model was trained from scratch on the Undi95/QwQ-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 1.0077
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7216 | 1.0 | 649 | 1.0138 |
0.6349 | 1.9977 | 1296 | 1.0077 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.