Multilingual Generative Pretrained Transformer with 176B parameters with capacity for Finnish. This model is built upon pretrained BLOOM which is then further pretrained with a combined ROOTS + Finnish (without weighting) dataset for 40B tokens.
Datasets
We used a combination of multiple Finnish resources.
- Finnish Internet Parsebank https://turkunlp.org/finnish_nlp.html mC4 multilingual colossal, cleaned Common Crawl https://huggingface.co./datasets/mc4
- Common Crawl Finnish https://TODO
- Finnish Wikipedia https://fi.wikipedia.org/wiki
- Lönnrot Projekti Lönnrot http://www.lonnrot.net/
- ePub National library ”epub” collection
- National library ”lehdet” collection
- Suomi24 The Suomi 24 Corpus 2001-2020 http://urn.fi/urn:nbn:fi:lb-2021101527
- Reddit r/Suomi submissions and comments https://www.reddit.com/r/Suomi
- STT Finnish News Agency Archive 1992-2018 http://urn.fi/urn:nbn:fi:lb-2019041501
- Yle Finnish News Archive 2011-2018 http://urn.fi/urn:nbn:fi:lb-2017070501
- Yle Finnish News Archive 2019-2020 http://urn.fi/urn:nbn:fi:lb-2021050401
- Yle News Archive Easy-to-read Finnish 2011-2018 http://urn.fi/urn:nbn:fi:lb-2019050901
- Yle News Archive Easy-to-read Finnish 2019-2020 http://urn.fi/urn:nbn:fi:lb-2021050701
- ROOTS - original BLOOM training corpus
Sampling ratios for Finnish
Dataset | Chars | Ratio | Weight | W.Ratio |
---|---|---|---|---|
Parsebank | 35.0B | 16.9% | 1.5 | 22.7% |
mC4-Fi | 46.3B | 22.4% | 1.0 | 20.0% |
CC-Fi | 79.6B | 38.5% | 1.0 | 34.4% |
Fiwiki | 0.8B | 0.4% | 3.0 | 1.0% |
Lönnrot | 0.8B | 0.4% | 3.0 | 1.0% |
Yle | 1.6B | 0.8% | 2.0 | 1.4% |
STT | 2.2B | 1.1% | 2.0 | 1.9% |
ePub | 13.5B | 6.5% | 1.0 | 5.8% |
Lehdet | 5.8B | 2.8% | 1.0 | 2.5% |
Suomi24 | 20.6B | 9.9% | 1.0 | 8.9% |
Reddit-Fi | 0.7B | 0.4% | 1.0 | 0.3% |
TOTAL | 207.0B | 100.0% | N/A | 100.0% |
And for whole continued pretraining, ROOTS is mixed in.
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.