license: apache-2.0
library_name: transformers
base_model: nbeerbower/mistral-nemo-bophades3-12B
datasets:
- jondurbin/truthy-dpo-v0.1
- kyujinpy/orca_math_dpo
- antiven0m/physical-reasoning-dpo
tags:
- llama-cpp
- gguf-my-repo
Triangle104/mistral-nemo-bophades3-12B-Q8_0-GGUF
This model was converted to GGUF format from nbeerbower/mistral-nemo-bophades3-12B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
Mahou-1.5-mistral-nemo-12B-lorablated finetuned on jondurbin/truthy-dpo-v0.1, kyujinpy/orca_math_dpo, and antiven0m/physical-reasoning-dpo. Method
ORPO tuned with 8x A100 for 2 epochs.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/mistral-nemo-bophades3-12B-Q8_0-GGUF --hf-file mistral-nemo-bophades3-12b-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/mistral-nemo-bophades3-12B-Q8_0-GGUF --hf-file mistral-nemo-bophades3-12b-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/mistral-nemo-bophades3-12B-Q8_0-GGUF --hf-file mistral-nemo-bophades3-12b-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/mistral-nemo-bophades3-12B-Q8_0-GGUF --hf-file mistral-nemo-bophades3-12b-q8_0.gguf -c 2048