Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF
This model was converted to GGUF format from allura-org/TQ2.5-14B-Neon-v1
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
RP finetune of Supernova-Medius. Turned out surprisingly nice on it's own, I honestly made it only as a merge fuel, but it impressed me and Prodeus enough to release it separately (history repeats I guess, Sugarquill also started out this way). Quite interesting prose, definitely quite distinct from Supernova or EVA for that matter. Instruction following is decent as well. Not really much to say about this one, just a decent RP model, tbh. Euryale-inspired I guess.
Model was trained by Auri.
Training notes
Model was trained on a dataset consisting of 77M tokens of synthetic RP and short story gen data. Training took around 2 hours on 8xH100 SXM node. Training config was more or less reused from Sugarquill, and it worked fairly well again. Had the node crash after finishing the training and merging in the LoRA, so I had to merge it with MergeKit on a separate node, otherwise everything was smooth.
Huge thanks to Retis Labs for sponsoring this run!
Format
Model responds to ChatML instruct formatting, exactly like it's base model.
<|im_start|>system {system message}<|im_end|> <|im_start|>user {user message}<|im_end|> <|im_start|>assistant {response}<|im_end|>
Recommended Samplers
My classic stable Qwen setup works quite well:
Temperature - 0.8 Min-P - 0.05 Top-A - 0.3 Repetition Penalty - 1.03
Training config See Axolotl config
axolotl version 0.6.0
Model
base_model: arcee-ai/SuperNova-Medius strict: false
Liger Kernels (optimization)
plugins:
- axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true
Output and HuggingFace
output_dir: /workspace/axolotl/TQ-2.5-14B-Neon hub_model_id: allura-org/TQ-2.5-14B-Neon-LoRA hf_use_auth_token: true hub_strategy: "all_checkpoints"
WandB
wandb_project: allura-org wandb_entity: wandb_name: TQ-2.5-14B-Neon-1
Data
chat_template: chatml #train_on_inputs: false group_by_length: false datasets:
- path: allura-org/neon-41k type: chat_template field_messages: conversations message_field_role: from message_field_content: value
Evaluation
val_set_size: 0.01 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128
Technical aspects
sequence_len: 16384 save_safetensors: true saves_per_epoch: 2 logging_steps: 1 special_tokens:
Quantization
bf16: auto fp16: tf32: false
For LoRA
load_in_8bit: false load_in_4bit: false
LoRA
peft_use_rslora: true peft_use_dora: false # better but slower adapter: lora # lora or qlora lora_model_dir: lora_r: 64 # 64 is optimal for most trains on instruct lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules:
- embed_tokens
- lm_head
#loraplus_lr_ratio: 8 # works to converge faster but is kinda cancer bc makes model unstable #loraplus_lr_embedding:
Training hyperparameters
max_steps:
num_epochs: 2
Anti Overfit and Stability
weight_decay: 0.01 max_grad_norm: 1.0
Learning Rate
warmup_ratio: 0.05 learning_rate: 0.00003 lr_scheduler: cosine #lr_scheduler_kwargs:
min_lr: 0.0000024
optimizer: paged_ademamix_8bit # usually adamw_torch or paged_adamw_8bit
Batch Size
gradient_accumulation_steps: 4 # More effective batch size - stabler train, usually. MBS also speeds it up. micro_batch_size: 4 # Batch size per gpu = micro_batch_size * gradient_accumulation_steps eval_batch_size: 1
Optimizations
pad_to_sequence_len: true sample_packing: true eval_sample_packing: false flash_attention: true xformers_attention: gradient_checkpointing: "unsloth" gradient_checkpointing_kwargs: use_reentrant: true local_rank: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # Only use with multi gpu # _bf16_cpuoffload_all
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
Misc
early_stopping_patience: debug:
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF --hf-file tq2.5-14b-neon-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF --hf-file tq2.5-14b-neon-v1-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF --hf-file tq2.5-14b-neon-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF --hf-file tq2.5-14b-neon-v1-q4_k_m.gguf -c 2048
- Downloads last month
- 17
Model tree for Triangle104/TQ2.5-14B-Neon-v1-Q4_K_M-GGUF
Base model
Qwen/Qwen2.5-14B