metadata
base_model:
- Sao10K/L3-8B-Lunaris-v1
- merge
- mergekit
- lazymergekit
model-index:
- name: L3-12B-Lunaris-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 69.09
name: strict accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.18
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.16
name: exact match
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.94
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.05
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.83
name: accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
name: Open LLM Leaderboard
L3-12B-Lunaris-v1
L3-12B-Lunaris-v1 is a self merge of the following model using LazyMergekit with --clone-tensors argument added:
Works best with lower temperature, between 0.8-0.9.
🧩 Configuration
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 8]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 0.8
- sources:
- layer_range: [8, 16]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 0.8
- sources:
- layer_range: [16, 24]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 1.0
- sources:
- layer_range: [24, 32]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 1.0
- sources:
- layer_range: [0, 8]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 0.7
- sources:
- layer_range: [8, 16]
model: Sao10K/L3-8B-Lunaris-v1
parameters:
scale_rules:
- filter: value
value: 0.7
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Tremontaine/L3-12B-Lunaris-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 25.38 |
IFEval (0-Shot) | 69.09 |
BBH (3-Shot) | 32.18 |
MATH Lvl 5 (4-Shot) | 8.16 |
GPQA (0-shot) | 7.94 |
MuSR (0-shot) | 4.05 |
MMLU-PRO (5-shot) | 30.83 |