holdenk's picture
Initial model commit.
8ca7bed
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- generated_from_trainer
model-index:
- name: mistral_fine_out
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: out/train_alpaca.jsonl
type:
alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./mistral_fine_out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoint: true
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 0.05
eval_table_size:
eval_table_max_new_tokens: 128
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
model_config:
sliding_window: 4096
```
</details><br>
The fine tuning script used for launch was from https://github.com/totallylegitco/healthinsurance-llm w/ run_remote.sh and an INPUT_MODEL=mistral
# TotallyLegitCo/fighthealthinsurance_model_v0.3
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) on the [syntehtic-appeal](https://huggingface.co./datasets/TotallyLegitCo/synthetic-appeals) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3954
## Model description
Generate health insurance appeals. Early work.
## Intended uses & limitations
Generate health insurance appeals. This is early work and may not be suitable for production.
## Training and evaluation data
The syntehtic appeal dataset was used for training and evaluation. Given how the dataset was produced there is likely cross-contamination of the training and eval datasets so loss values are likely understated.
This model is intended to match the Mistral-7B-Instruct style with ```<s>[INST]Instructions[/INT]``` present (as well as system specific instructions within an extra ```<<SYS><</SYS>```.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0506 | 0.0 | 1 | 2.4510 |
| 0.8601 | 0.2 | 58 | 1.1493 |
| 0.8635 | 0.4 | 116 | 1.1356 |
| 0.869 | 0.61 | 174 | 1.1174 |
| 0.7764 | 0.81 | 232 | 1.1173 |
| 0.7803 | 1.01 | 290 | 1.1124 |
| 0.6902 | 1.2 | 348 | 1.1570 |
| 0.6774 | 1.4 | 406 | 1.1591 |
| 0.6859 | 1.6 | 464 | 1.1651 |
| 0.725 | 1.81 | 522 | 1.1677 |
| 0.6525 | 2.01 | 580 | 1.1686 |
| 0.5069 | 2.2 | 638 | 1.2688 |
| 0.4702 | 2.4 | 696 | 1.2767 |
| 0.4888 | 2.6 | 754 | 1.2852 |
| 0.5197 | 2.8 | 812 | 1.2881 |
| 0.4734 | 3.01 | 870 | 1.2851 |
| 0.3586 | 3.2 | 928 | 1.3856 |
| 0.3889 | 3.4 | 986 | 1.3929 |
| 0.3526 | 3.6 | 1044 | 1.3959 |
| 0.3832 | 3.8 | 1102 | 1.3954 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0