|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Mistral model.""" |
|
import inspect |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from .configuration_mistral import MistralConfig |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
from .modeling_beacon import Memory |
|
from .modeling_utils import optional_grad_ctx, compute_loss, get_rope, ModelOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "MistralConfig" |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class MistralRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
MistralRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class MistralMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class MistralAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = get_rope(self.head_dim, config.rope_theta, config.max_position_embeddings, getattr(config, "rope_scaling", None)) |
|
|
|
|
|
|
|
if "q" in config.beacon_param: |
|
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None) |
|
|
|
self.beacon_q_proj.weight.data.zero_() |
|
self.beacon_q_proj._is_hf_initialized = True |
|
if "k" in config.beacon_param: |
|
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None) |
|
self.beacon_k_proj.weight.data.zero_() |
|
self.beacon_k_proj._is_hf_initialized = True |
|
if "v" in config.beacon_param: |
|
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None) |
|
self.beacon_v_proj.weight.data.zero_() |
|
self.beacon_v_proj._is_hf_initialized = True |
|
if "o" in config.beacon_param: |
|
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None) |
|
self.beacon_o_proj.weight.data.zero_() |
|
self.beacon_o_proj._is_hf_initialized = True |
|
|
|
def _init_beacon_proj(self, missing_keys): |
|
"""Initialize the beacon projection weight with that of the ordinal projection.""" |
|
beacon_param = self.config.beacon_param |
|
|
|
if is_deepspeed_zero3_enabled(): |
|
|
|
|
|
|
|
|
|
import deepspeed |
|
if "q" in beacon_param: |
|
params = [self.beacon_q_proj.weight, self.q_proj.weight] |
|
if self.q_proj.bias is not None: |
|
params.extend([self.beacon_q_proj.bias, self.q_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any(): |
|
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if self.q_proj.bias is not None: |
|
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data |
|
if "k" in beacon_param: |
|
params = [self.beacon_k_proj.weight, self.k_proj.weight] |
|
if self.k_proj.bias is not None: |
|
params.extend([self.beacon_k_proj.bias, self.k_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any(): |
|
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if self.k_proj.bias is not None: |
|
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data |
|
if "v" in beacon_param: |
|
params = [self.beacon_v_proj.weight, self.v_proj.weight] |
|
if self.v_proj.bias is not None: |
|
params.extend([self.beacon_v_proj.bias, self.v_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any(): |
|
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if self.v_proj.bias is not None: |
|
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data |
|
if "o" in beacon_param: |
|
params = [self.beacon_o_proj.weight, self.o_proj.weight] |
|
if self.o_proj.bias is not None: |
|
params.extend([self.beacon_o_proj.bias, self.o_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any(): |
|
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data |
|
if self.o_proj.bias is not None: |
|
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data |
|
else: |
|
|
|
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys): |
|
|
|
|
|
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if self.q_proj.bias is not None: |
|
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data |
|
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if self.k_proj.bias is not None: |
|
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data |
|
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if self.v_proj.bias is not None: |
|
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data |
|
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data |
|
if self.o_proj.bias is not None: |
|
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices): |
|
if beacon_size > 0: |
|
|
|
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] |
|
|
|
|
|
if "q" in self.config.beacon_param: |
|
ordinal_query_states = self.q_proj(hidden_states) |
|
beacon_query_states = self.beacon_q_proj(hidden_states) |
|
query_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_query_states, beacon_query_states) |
|
if (cur_beacon_indices == 2).any(): |
|
|
|
|
|
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()] |
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
if "k" in self.config.beacon_param: |
|
ordinal_key_states = self.k_proj(hidden_states) |
|
beacon_key_states = self.beacon_k_proj(hidden_states) |
|
key_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_key_states, beacon_key_states) |
|
if (cur_beacon_indices == 2).any(): |
|
|
|
|
|
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()] |
|
else: |
|
key_states = self.k_proj(hidden_states) |
|
|
|
if "v" in self.config.beacon_param: |
|
ordinal_value_states = self.v_proj(hidden_states) |
|
beacon_value_states = self.beacon_v_proj(hidden_states) |
|
value_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_value_states, beacon_value_states) |
|
if (cur_beacon_indices == 2).any(): |
|
|
|
|
|
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()] |
|
else: |
|
value_states = self.v_proj(hidden_states) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
return query_states, key_states, value_states |
|
|
|
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices): |
|
if beacon_size > 0: |
|
|
|
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:] |
|
|
|
if "o" in self.config.beacon_param: |
|
ordinal_attn_output = self.o_proj(attn_output) |
|
beacon_attn_output = self.beacon_o_proj(attn_output) |
|
attn_output = torch.where((cur_beacon_indices == 0)[:, None], ordinal_attn_output, beacon_attn_output) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
|
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MistralSdpaAttention(MistralAttention): |
|
""" |
|
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
class MistralFlashAttention2(MistralAttention): |
|
""" |
|
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
|
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
MISTRAL_ATTENTION_CLASSES = { |
|
"eager": MistralAttention, |
|
"sdpa": MistralSdpaAttention, |
|
"flash_attention_2": MistralFlashAttention2, |
|
} |
|
|
|
|
|
class MistralDecoderLayer(nn.Module): |
|
def __init__(self, config: MistralConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if config.sliding_window is not None and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = MistralMLP(config) |
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
MISTRAL_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MistralConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class MistralPreTrainedModel(PreTrainedModel): |
|
config_class = MistralConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MistralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
MISTRAL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class MistralModel(MistralPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] |
|
|
|
Args: |
|
config: MistralConfig |
|
""" |
|
|
|
def __init__(self, config: MistralConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) |
|
self.beacon_embed_tokens._is_hf_initialized = True |
|
|
|
self.layers = nn.ModuleList( |
|
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def _init_beacon_embed(self, missing_keys): |
|
"""Initialize the beacon token embedding with that of the eos token.""" |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_embed_tokens.weight == 0).all(): |
|
if self.config.beacon_embed_init == "bos": |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.beacon_embed_init == "eos": |
|
if isinstance(self.config.eos_token_id, list): |
|
eos_token_id = self.config.eos_token_id[0] |
|
else: |
|
eos_token_id = self.config.eos_token_id |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") |
|
else: |
|
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys): |
|
if self.config.beacon_embed_init == "bos": |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.beacon_embed_init == "eos": |
|
if isinstance(self.config.eos_token_id, list): |
|
eos_token_id = self.config.eos_token_id[0] |
|
else: |
|
eos_token_id = self.config.eos_token_id |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
use_cache = True |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
past_key, past_value, beacon_size, beacon_indices = past_key_values[0] |
|
|
|
|
|
if beacon_size > 0: |
|
|
|
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] |
|
|
|
ordinal_input_ids = input_ids[:, cur_beacon_indices == 0] |
|
beacon_input_ids = input_ids[:, cur_beacon_indices > 0] |
|
ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids) |
|
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) |
|
|
|
inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1]) |
|
inputs_embeds[:, cur_beacon_indices == 0] = ordinal_inputs_embeds |
|
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds |
|
|
|
else: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_value, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class MistralForCausalLM(MistralPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MistralModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
"""Override the default from_pretrained to extend vocab size according to beacon_size.""" |
|
kwargs.update(output_loading_info=True) |
|
model, loading_info = super().from_pretrained(*args, **kwargs) |
|
|
|
|
|
config = model.config |
|
model.memory = Memory( |
|
model_config=config, |
|
k_seq_dim=2, |
|
v_seq_dim=2, |
|
) |
|
|
|
missing_keys = loading_info["missing_keys"] |
|
|
|
|
|
model.model._init_beacon_embed(missing_keys) |
|
|
|
for layer in model.model.layers: |
|
layer.self_attn._init_beacon_proj(missing_keys) |
|
|
|
return model |
|
|
|
def _native_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if past_key_values is None: |
|
|
|
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)] |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
batch_loss = None |
|
token_loss = None |
|
|
|
if labels is not None: |
|
loss, batch_loss, token_loss = compute_loss(logits, labels, shift=False) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return ModelOutput( |
|
loss=loss, |
|
batch_loss=batch_loss, |
|
token_loss=token_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def _beacon_forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
beacon_skip_first=None, |
|
beacon_skip_last=None |
|
): |
|
|
|
|
|
|
|
self.memory.prepare( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
labels=labels |
|
) |
|
|
|
|
|
|
|
while not self.memory.finish: |
|
|
|
|
|
|
|
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step() |
|
|
|
|
|
|
|
outputs = self._native_forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels, |
|
) |
|
|
|
|
|
|
|
|
|
self.memory.update_memory(outputs.past_key_values) |
|
|
|
|
|
|
|
if labels is not None: |
|
|
|
self.memory.update_loss(outputs.batch_loss, (labels != -100).sum(-1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.memory.output(outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return outputs |
|
|
|
def forward(self, **kwargs): |
|
"""Forward computation over a batch of sequences. |
|
""" |
|
|
|
with optional_grad_ctx(with_grad=self.training): |
|
|
|
if hasattr(self, "_enable_beacon") and self._enable_beacon == False: |
|
return self._native_forward(**kwargs) |
|
else: |
|
return self._beacon_forward(**kwargs) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
model_inputs = {"input_ids": input_ids, "beacon_skip_first": beacon_skip_first, "beacon_skip_last": beacon_skip_last} |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |