chienqian commited on
Commit
578867d
1 Parent(s): 93b5486
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "data/outputs/__mistral_1__",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_mistral.MistralConfig",
8
+ "AutoModelForCausalLM": "modeling_mistral.MistralForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "beacon_attend_prev": false,
12
+ "beacon_attn": "step-expansion",
13
+ "beacon_embed_init": "eos",
14
+ "beacon_param": [
15
+ "q",
16
+ "k",
17
+ "v",
18
+ "o"
19
+ ],
20
+ "beacon_ratio": [
21
+ 2,
22
+ 4,
23
+ 8
24
+ ],
25
+ "beacon_ratio_mix": "step-random",
26
+ "beacon_sink_size": 1,
27
+ "beacon_stride": 2048,
28
+ "beacon_window": 2048,
29
+ "beacon_pos": "append",
30
+ "bos_token_id": 1,
31
+ "eos_token_id": 2,
32
+ "hidden_act": "silu",
33
+ "hidden_size": 4096,
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 14336,
36
+ "max_position_embeddings": 32768,
37
+ "model_type": "mistral",
38
+ "num_attention_heads": 32,
39
+ "num_hidden_layers": 32,
40
+ "num_key_value_heads": 8,
41
+ "retrieval_cache_dir": "/share/shared_models",
42
+ "retrieval_key_length": null,
43
+ "retrieval_method": null,
44
+ "retrieval_topk": null,
45
+ "rms_norm_eps": 1e-05,
46
+ "rope_scaling": null,
47
+ "rope_theta": 1000000.0,
48
+ "sliding_window": null,
49
+ "tie_word_embeddings": false,
50
+ "torch_dtype": "bfloat16",
51
+ "transformers_version": "4.39.3",
52
+ "use_cache": true,
53
+ "vocab_size": 32000
54
+ }
configuration_mistral.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mistral model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
25
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
26
+ }
27
+
28
+
29
+ class MistralConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
32
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
34
+
35
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
36
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`MistralModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 14336):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ num_key_value_heads (`int`, *optional*, defaults to 8):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
64
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
65
+ allows sequence of up to 4096*32 tokens.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ The id of the padding token.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ The id of the "end-of-sequence" token.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether the model's input and output word embeddings should be tied.
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ sliding_window (`int`, *optional*, defaults to 4096):
84
+ Sliding window attention window size. If not specified, will default to `4096`.
85
+ attention_dropout (`float`, *optional*, defaults to 0.0):
86
+ The dropout ratio for the attention probabilities.
87
+
88
+ ```python
89
+ >>> from transformers import MistralModel, MistralConfig
90
+
91
+ >>> # Initializing a Mistral 7B style configuration
92
+ >>> configuration = MistralConfig()
93
+
94
+ >>> # Initializing a model from the Mistral 7B style configuration
95
+ >>> model = MistralModel(configuration)
96
+
97
+ >>> # Accessing the model configuration
98
+ >>> configuration = model.config
99
+ ```"""
100
+
101
+ model_type = "mistral"
102
+ keys_to_ignore_at_inference = ["past_key_values"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_size=32000,
107
+ hidden_size=4096,
108
+ intermediate_size=14336,
109
+ num_hidden_layers=32,
110
+ num_attention_heads=32,
111
+ num_key_value_heads=8,
112
+ hidden_act="silu",
113
+ max_position_embeddings=4096 * 32,
114
+ initializer_range=0.02,
115
+ rms_norm_eps=1e-6,
116
+ use_cache=True,
117
+ pad_token_id=None,
118
+ bos_token_id=1,
119
+ eos_token_id=2,
120
+ tie_word_embeddings=False,
121
+ rope_theta=10000.0,
122
+ sliding_window=4096,
123
+ rope_scaling=None,
124
+ attention_dropout=0.0,
125
+ beacon_window=1024,
126
+ beacon_stride=1024,
127
+ beacon_attn="full-coverage",
128
+ beacon_ratio=[2,4,8,16,32],
129
+ beacon_ratio_mix="step-random",
130
+ beacon_param=[],
131
+ beacon_embed_init="eos",
132
+ beacon_sink_size=0,
133
+ beacon_attend_prev=True,
134
+ beacon_pos="interleave",
135
+ beacon_parallel_window=1,
136
+ beacon_accum=True,
137
+ **kwargs,
138
+ ):
139
+ self.vocab_size = vocab_size
140
+ self.max_position_embeddings = max_position_embeddings
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+ self.sliding_window = sliding_window
146
+
147
+ # for backward compatibility
148
+ if num_key_value_heads is None:
149
+ num_key_value_heads = num_attention_heads
150
+
151
+ self.num_key_value_heads = num_key_value_heads
152
+ self.hidden_act = hidden_act
153
+ self.initializer_range = initializer_range
154
+ self.rms_norm_eps = rms_norm_eps
155
+ self.use_cache = use_cache
156
+ self.rope_theta = rope_theta
157
+ self.attention_dropout = attention_dropout
158
+
159
+ self.rope_scaling = rope_scaling
160
+ self._rope_scaling_validation()
161
+
162
+ self.beacon_window = beacon_window
163
+ self.beacon_stride = beacon_stride
164
+ self.beacon_attn = beacon_attn
165
+ self.beacon_ratio = beacon_ratio
166
+ self.beacon_ratio_mix = beacon_ratio_mix
167
+ self.beacon_param = beacon_param
168
+ self.beacon_embed_init = beacon_embed_init
169
+ self.beacon_sink_size = beacon_sink_size
170
+ self.beacon_attend_prev = beacon_attend_prev
171
+ self.beacon_pos = beacon_pos
172
+ self.beacon_parallel_window = beacon_parallel_window
173
+ self.beacon_accum = beacon_accum
174
+
175
+ super().__init__(
176
+ pad_token_id=pad_token_id,
177
+ bos_token_id=bos_token_id,
178
+ eos_token_id=eos_token_id,
179
+ tie_word_embeddings=tie_word_embeddings,
180
+ **kwargs,
181
+ )
182
+
183
+ def _rope_scaling_validation(self):
184
+ """
185
+ Validate the `rope_scaling` configuration.
186
+ """
187
+ if self.rope_scaling is None:
188
+ return
189
+
190
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
191
+ raise ValueError(
192
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
193
+ f"got {self.rope_scaling}"
194
+ )
195
+ rope_scaling_type = self.rope_scaling.get("type", None)
196
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
197
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
200
+ )
201
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
202
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.3"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e416c8668a41968e4198a650f19b03ed8fb38e1b5a41fc856bd2e3af31c7a84
3
+ size 4993488960
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18967ee869eed6db5ed9bd3f8571f1341c2bdd67fa4c0da47f7a5cd7bd577bde
3
+ size 4915886400
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feb331d8c928fc013ff4d0c16db25f5046c2feaeec6755b78d98ff7420c95dc6
3
+ size 4999789088
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eb37682a3e4b2fe960edab7a9b4a50027fac9a01edba9695f3c5096dd9d6bbc
3
+ size 2258712360
model.safetensors.index.json ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17167826944
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.beacon_embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.11.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.12.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.12.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.13.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.13.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.13.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.14.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.14.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.14.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.14.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.15.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.15.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.15.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.15.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.16.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.16.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.16.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.16.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.17.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.17.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.17.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.17.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.18.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.18.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.18.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.18.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.19.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.19.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.19.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.19.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
166
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
168
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
169
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "model.layers.2.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
171
+ "model.layers.2.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
172
+ "model.layers.2.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
173
+ "model.layers.2.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
174
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
176
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
177
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
178
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.20.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.20.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.20.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.20.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.21.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.21.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.21.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.21.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.22.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.22.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.22.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.22.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.23.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.23.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.23.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.23.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.24.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.24.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.24.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.24.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.25.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.25.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.25.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.25.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.26.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.26.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.26.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.26.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.27.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.27.self_attn.beacon_o_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.27.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.27.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
283
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
284
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
285
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
286
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
287
+ "model.layers.28.self_attn.beacon_k_proj.weight": "model-00004-of-00004.safetensors",
288
+ "model.layers.28.self_attn.beacon_o_proj.weight": "model-00004-of-00004.safetensors",
289
+ "model.layers.28.self_attn.beacon_q_proj.weight": "model-00004-of-00004.safetensors",
290
+ "model.layers.28.self_attn.beacon_v_proj.weight": "model-00004-of-00004.safetensors",
291
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
296
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
297
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
300
+ "model.layers.29.self_attn.beacon_k_proj.weight": "model-00004-of-00004.safetensors",
301
+ "model.layers.29.self_attn.beacon_o_proj.weight": "model-00004-of-00004.safetensors",
302
+ "model.layers.29.self_attn.beacon_q_proj.weight": "model-00004-of-00004.safetensors",
303
+ "model.layers.29.self_attn.beacon_v_proj.weight": "model-00004-of-00004.safetensors",
304
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
305
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
306
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
307
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.3.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
314
+ "model.layers.3.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.3.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.3.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
319
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
322
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
323
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
324
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
325
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
326
+ "model.layers.30.self_attn.beacon_k_proj.weight": "model-00004-of-00004.safetensors",
327
+ "model.layers.30.self_attn.beacon_o_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.30.self_attn.beacon_q_proj.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.30.self_attn.beacon_v_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
334
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
337
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
338
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
339
+ "model.layers.31.self_attn.beacon_k_proj.weight": "model-00004-of-00004.safetensors",
340
+ "model.layers.31.self_attn.beacon_o_proj.weight": "model-00004-of-00004.safetensors",
341
+ "model.layers.31.self_attn.beacon_q_proj.weight": "model-00004-of-00004.safetensors",
342
+ "model.layers.31.self_attn.beacon_v_proj.weight": "model-00004-of-00004.safetensors",
343
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
344
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
345
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
346
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
347
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.4.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.4.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.4.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.4.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.5.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.5.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.5.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.5.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
374
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
377
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.6.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.6.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.6.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.6.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.7.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.7.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.7.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.7.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
395
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.8.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.8.self_attn.beacon_o_proj.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.8.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.8.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
413
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
414
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
415
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
416
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
417
+ "model.layers.9.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
418
+ "model.layers.9.self_attn.beacon_o_proj.weight": "model-00002-of-00004.safetensors",
419
+ "model.layers.9.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
420
+ "model.layers.9.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
421
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
422
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
423
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
425
+ "model.norm.weight": "model-00004-of-00004.safetensors"
426
+ }
427
+ }
modeling_beacon.py ADDED
@@ -0,0 +1,1143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import time
4
+ import numpy as np
5
+ import torch.distributed as dist
6
+ from copy import deepcopy
7
+ from transformers.utils import logging
8
+ from transformers import AutoTokenizer
9
+ from itertools import cycle
10
+ from typing import List
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class Memory(torch.nn.Module):
16
+ def __init__(
17
+ self,
18
+ model_config,
19
+ k_seq_dim:int=2,
20
+ v_seq_dim:int=2,
21
+ ):
22
+ """Setup necessary attributes."""
23
+ super().__init__()
24
+
25
+ self.config = model_config
26
+
27
+ # initialize necessary parameters
28
+ self.k_seq_dim = k_seq_dim
29
+ self.v_seq_dim = v_seq_dim
30
+ self.rng = np.random.default_rng(42)
31
+
32
+ self._post_validation()
33
+ self.reset()
34
+
35
+ @property
36
+ def beacon_token(self):
37
+ return self.config.vocab_size
38
+
39
+ def _post_validation(self, verbose=True):
40
+ assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!"
41
+ for ratio in self.config.beacon_ratio:
42
+ assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!"
43
+ assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!"
44
+ assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!"
45
+ # assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!"
46
+ if self.config.beacon_pos == "interleave":
47
+ assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode."
48
+ if self.config.beacon_parallel_window > 1:
49
+ assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!"
50
+
51
+ self._cpu = torch.device("cpu")
52
+
53
+ if verbose:
54
+ info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..."
55
+ logger.info(info)
56
+
57
+ def set(self, verbose=True, **kwargs):
58
+ """
59
+ Set attributes out of the constructor.
60
+ """
61
+ for k, v in kwargs.items():
62
+ setattr(self.config, k, v)
63
+ self._post_validation(verbose=verbose)
64
+
65
+ def reset(self, **kwargs):
66
+ """Initialize attributes for a new sequence."""
67
+ # the cursor pointing to the start of the current window
68
+ self.start_idx = 0
69
+ # the cursor pointing to the end of the current window
70
+ self.end_idx = 0
71
+ # the beacon sizes of all strides
72
+ self.all_beacon_sizes = []
73
+ # the loss per batch
74
+ self.batch_loss = None
75
+ # the valid token number per batch
76
+ self.valid_token_num = None
77
+ # the step index for processing the input_ids
78
+ self.step_idx = 0
79
+ # used in set_compression_ratio
80
+ self.compression_ratio = None
81
+ # the previous inputs is a full window or not, defaults to True
82
+ self.is_full_window = True
83
+ # the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window)
84
+ self.raw_size_to_cache = 0
85
+
86
+ # the number of tokens in previous stride that should be compressed by the upcoming beacon
87
+ self.interleave_remainder = 0
88
+ # compression ratio for the unfinished window
89
+ self.interleave_compression_ratio = None
90
+ self.beacon_indices = None
91
+
92
+ self.all_input_ids = None
93
+ self.all_attention_mask = None
94
+ self.all_labels = None
95
+
96
+ # NOTE: will be reset in prepare()
97
+ self.beacon_skip_first = None
98
+ self.beacon_skip_last = None
99
+
100
+ # the attention sink activations
101
+ self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
102
+ # the beacon activations
103
+ self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
104
+ # the raw activations of recent tokens
105
+ self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
106
+
107
+ # NOTE: in case we want to resume the memory from a particular state
108
+ for k, v in kwargs.items():
109
+ # NOTE: deepcopy to untie the memory state and the model memory
110
+ setattr(self, deepcopy(k), deepcopy(v))
111
+
112
+ def export(self):
113
+ """Export all necessary attributes of the memory module."""
114
+ return {
115
+ "start_idx": self.start_idx,
116
+ "end_idx": self.end_idx,
117
+ "all_beacon_sizes": self.all_beacon_sizes,
118
+ "batch_loss": self.batch_loss,
119
+ "valid_token_num": self.valid_token_num,
120
+ "step_idx": self.step_idx,
121
+ "compression_ratio": self.compression_ratio,
122
+ "is_full_window": self.is_full_window,
123
+ "raw_size_to_cache": self.raw_size_to_cache,
124
+ "interleave_remainder": self.interleave_remainder,
125
+ "interleave_compression_ratio": self.interleave_compression_ratio,
126
+ "beacon_indices": self.beacon_indices,
127
+ "all_input_ids": self.all_input_ids,
128
+ "all_attention_mask": self.all_attention_mask,
129
+ "all_labels": self.all_labels,
130
+ "beacon_skip_first": self.beacon_skip_first,
131
+ "beacon_skip_last": self.beacon_skip_last,
132
+ # NOTE: deepcopy to untie the memory state and the model memory
133
+ "sink_activations": deepcopy(self.sink_activations),
134
+ "beacon_activations": deepcopy(self.beacon_activations),
135
+ "raw_activations": deepcopy(self.raw_activations),
136
+ }
137
+
138
+ @property
139
+ def all_sequence_length(self):
140
+ if self.all_input_ids is None:
141
+ return 0
142
+ else:
143
+ return self.all_input_ids.shape[1]
144
+
145
+ @property
146
+ def batch_size(self):
147
+ if self.all_input_ids is None:
148
+ return 0
149
+ else:
150
+ return self.all_input_ids.shape[0]
151
+
152
+ @property
153
+ def finish(self):
154
+ is_finish = self.end_idx == self.all_sequence_length
155
+ return is_finish
156
+
157
+ @property
158
+ def dtype(self):
159
+ return self.config.torch_dtype
160
+
161
+ @property
162
+ def min_value(self):
163
+ return torch.finfo(self.dtype).min
164
+
165
+ @property
166
+ def max_position_embeddings(self):
167
+ max_position_embeddings = self.config.max_position_embeddings
168
+ if getattr(self.config, "rope_scaling", None) is not None:
169
+ scaling_factor = self.config.rope_scaling["factor"]
170
+ max_position_embeddings = max_position_embeddings * scaling_factor
171
+ return max_position_embeddings
172
+
173
+ @property
174
+ def beacon_window(self):
175
+ if (
176
+ self.beacon_skip_last is not None
177
+ and self.start_idx < self.beacon_skip_last
178
+ and self.start_idx + self.config.beacon_window > self.beacon_skip_last
179
+ ):
180
+ return self.beacon_skip_last - self.start_idx
181
+ else:
182
+ return self.config.beacon_window
183
+
184
+ @property
185
+ def beacon_stride(self):
186
+ if (
187
+ self.beacon_skip_last is not None
188
+ and self.start_idx < self.beacon_skip_last
189
+ and self.start_idx + self.config.beacon_window > self.beacon_skip_last
190
+ ):
191
+ return self.beacon_skip_last - self.start_idx
192
+ else:
193
+ return self.config.beacon_stride
194
+
195
+ def get_memory_size(self):
196
+ """
197
+ Sink memory size, beacon memory size and raw memory size.
198
+ """
199
+ sink_memory_size = 0
200
+ beacon_memory_size = 0
201
+ raw_memory_size = 0
202
+ if self.sink_activations[0][0] is not None:
203
+ sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
204
+ if self.beacon_activations[0][0] is not None:
205
+ beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim]
206
+ if self.raw_activations[0][0] is not None:
207
+ raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
208
+ return sink_memory_size, beacon_memory_size, raw_memory_size
209
+
210
+ def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None):
211
+ """
212
+ Prepare inputs for the model. These inputs belong to the same sequence.
213
+ """
214
+ # assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
215
+ # assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
216
+
217
+ self._device = input_ids.device
218
+
219
+ # accumulate input_ids
220
+ if self.all_input_ids is None:
221
+ self.all_input_ids = input_ids.cpu()
222
+ else:
223
+ self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
224
+
225
+ # accumulate attention_mask
226
+ if attention_mask is None:
227
+ attention_mask = torch.ones_like(input_ids, device=torch.device("cpu"))
228
+ if self.all_attention_mask is None:
229
+ self.all_attention_mask = attention_mask.cpu()
230
+ else:
231
+ self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
232
+
233
+ # accumulate labels if exisits
234
+ if labels is not None:
235
+ # rotate labels in advance so that the loss of the last token is not ignored in every window
236
+ labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
237
+ if self.all_labels is None:
238
+ self.all_labels = labels.cpu()
239
+ else:
240
+ self.all_labels = torch.cat([self.all_labels, labels], dim=1)
241
+ assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
242
+
243
+ # how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.)
244
+ if skip_first is not None:
245
+ assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!"
246
+ assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip."
247
+ assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!"
248
+ # stop compression after how many tokens
249
+ if skip_last is not None:
250
+ skip_first = skip_first if skip_first is not None else 0
251
+ # assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}"
252
+ assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!"
253
+ self.beacon_skip_first = skip_first
254
+ self.beacon_skip_last = skip_last
255
+
256
+ def set_compression_ratio(self, start_idx, end_idx):
257
+ """Choose a condensing ratio from self.config.beacon_ratio"""
258
+ def filter_ratio(ratios, stride):
259
+ valid_ratios = []
260
+ for ratio in ratios:
261
+ # stride must be bigger than condensing ratio because we there must be at least one beacon
262
+ if stride < ratio:
263
+ continue
264
+ # the stride must be evenly divisible by condensing ratio
265
+ if ratio > 0 and (stride % ratio) != 0:
266
+ continue
267
+ # when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon
268
+ if ratio == 0 and self.training:
269
+ previous_has_zero = -1 in self.all_beacon_sizes
270
+ following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length
271
+ if previous_has_zero or (not following_has_nonzero):
272
+ continue
273
+ valid_ratios.append(ratio)
274
+ assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
275
+ return valid_ratios
276
+
277
+ def get_max_length(ratios):
278
+ max_lengths = []
279
+ for compression_ratio in ratios:
280
+ if compression_ratio > 0:
281
+ # NOTE: here we must use the scaled position embeddings
282
+ max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window)
283
+ else:
284
+ max_lengths.append(self.max_position_embeddings)
285
+ return max_lengths
286
+
287
+ if len(self.config.beacon_ratio) == 1:
288
+ return self.config.beacon_ratio[0]
289
+
290
+ ratio_mix = self.config.beacon_ratio_mix
291
+
292
+ beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride)
293
+
294
+ if ratio_mix == "instance-random":
295
+ if self.compression_ratio is None:
296
+ beacon_ratio = self.rng.choice(beacon_ratio).tolist()
297
+ self.compression_ratio = beacon_ratio
298
+ else:
299
+ beacon_ratio = self.compression_ratio
300
+
301
+ elif ratio_mix == "step-random":
302
+ beacon_ratio = self.rng.choice(beacon_ratio).tolist()
303
+
304
+ elif ratio_mix == "sequence":
305
+ if self.compression_ratio is None:
306
+ self.compression_ratio = cycle(beacon_ratio)
307
+ beacon_ratio = next(self.compression_ratio)
308
+
309
+ elif "adapt" in ratio_mix:
310
+ if self.compression_ratio is None:
311
+ future_length = int(ratio_mix.split("-")[1])
312
+ sequence_length = self.all_input_ids.shape[1] + future_length
313
+ max_lengths = get_max_length(beacon_ratio)
314
+ # ascendingly sort the max lengths
315
+ valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
316
+ if len(valid_max_lengths_and_indices):
317
+ minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
318
+ # use the minimal possible length for this sequence (the smallest fold ratio)
319
+ beacon_ratio = beacon_ratio[minimum_length_index]
320
+ else:
321
+ beacon_ratio = max(beacon_ratio)
322
+ # logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.")
323
+ self.compression_ratio = beacon_ratio
324
+ else:
325
+ beacon_ratio = self.compression_ratio
326
+
327
+ return beacon_ratio
328
+
329
+ def step(self):
330
+ # parallel does not support stride < window
331
+ # parallel does not support non-compression
332
+ # the input_ids is not long enough for parallel
333
+ if (
334
+ self.config.beacon_parallel_window > 1
335
+ and self.config.beacon_stride == self.config.beacon_window
336
+ and 0 not in self.config.beacon_ratio
337
+ and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window
338
+ ):
339
+ input_ids_list = []
340
+ attention_mask_list = []
341
+ position_ids_list = []
342
+ labels_list = []
343
+
344
+ beacon_size_list = []
345
+ beacon_indices_list = []
346
+
347
+ for i in range(self.config.beacon_parallel_window):
348
+ if i == 0:
349
+ _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step()
350
+ else:
351
+ _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True)
352
+
353
+ input_ids_list.append(_input_ids)
354
+ attention_mask_list.append(_attention_mask)
355
+ position_ids_list.append(_position_ids)
356
+ labels_list.append(_labels)
357
+ beacon_size_list.append(_past_key_values[0][2])
358
+ beacon_indices_list.append(_past_key_values[0][3])
359
+
360
+ if i == 0:
361
+ past_key_values = _past_key_values
362
+ if past_key_values[0][0] is None:
363
+ mem_size = 0
364
+ else:
365
+ mem_size = past_key_values[0][0].shape[self.k_seq_dim]
366
+
367
+ else:
368
+ # no memory
369
+ assert _past_key_values[0][0] is None
370
+
371
+ batch_size = self.all_input_ids.shape[0]
372
+ # NOTE: we do not need to repliace beacon tokens for the last window
373
+ seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1]
374
+
375
+ input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token
376
+ # all 0
377
+ attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value
378
+ position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len)
379
+ # 2 indicates the beacon token is used for replication
380
+ beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2
381
+ if _labels is not None:
382
+ # -100 because no loss on beacon tokens
383
+ labels = _labels.new_zeros((batch_size, seq_len)) - 100
384
+ else:
385
+ labels = None
386
+
387
+ start_idx = 0
388
+ position_offset = mem_size
389
+ for i in range(self.config.beacon_parallel_window):
390
+ beacon_size = beacon_size_list[i]
391
+
392
+ # populate input_ids
393
+ _input_ids = input_ids_list[i]
394
+ cur_seq_len = _input_ids.shape[1]
395
+ input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids
396
+
397
+ # populate attention_mask and position_ids
398
+ _attention_mask = attention_mask_list[i]
399
+ _position_ids = position_ids_list[i]
400
+ # the attention mask in the first window contains the mask for memory, which is redundant here
401
+ if i == 0:
402
+ _attention_mask = _attention_mask[:, :, :, mem_size:]
403
+ _position_ids = _position_ids[:, mem_size:] - mem_size
404
+
405
+ attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask
406
+ position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset
407
+
408
+ # populate beacon_indices
409
+ _beacon_indices = beacon_indices_list[i]
410
+ beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices
411
+
412
+ # populate labels
413
+ if labels is not None:
414
+ # populate labels
415
+ _labels = labels_list[i]
416
+ labels[:, start_idx: start_idx + cur_seq_len] = _labels
417
+
418
+ # NOTE: when there is sink activations, we need to bias the position_ids for the first window
419
+ if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None:
420
+ position_offset += 1
421
+
422
+ # modify the attention and position for replicated beacon tokens
423
+ if i != self.config.beacon_parallel_window - 1:
424
+ replicate_beacon_row_start = start_idx + cur_seq_len
425
+ replicate_beacon_col_start = mem_size + start_idx + cur_seq_len
426
+ # NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask
427
+ attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1)
428
+ # NOTE: all future tokens can attend to the replicated beacon tokens
429
+ attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0
430
+ # NOTE: the position of replicated beacon tokens start from 0
431
+ position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:]
432
+
433
+ start_idx += cur_seq_len + beacon_size
434
+ position_offset += beacon_size
435
+
436
+ # the memory is visible to all subsequent tokens
437
+ attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0
438
+
439
+ # NOTE: modify beacon_indices
440
+ for i, (key, value, _, _) in enumerate(past_key_values):
441
+ past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices)
442
+
443
+ # NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output()
444
+ self.beacon_indices = beacon_indices
445
+
446
+ return input_ids, attention_mask, position_ids, past_key_values, labels
447
+
448
+ else:
449
+ return self._step()
450
+
451
+ def _step(self, ignore_memory=False):
452
+ """
453
+ Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values.
454
+ """
455
+ #============================================#
456
+ # Check whether the inputs fulfills a window.
457
+ #============================================#
458
+
459
+ # the starting position of the current window w.r.t. the start of the current input sequence
460
+ start_idx = self.start_idx
461
+ # the end position of the current window w.r.t. the start of the current input sequence
462
+ end_idx = start_idx + self.beacon_window
463
+ # indicates if the current window is completely filled by raw activations and new tokens
464
+ # we only append beacon tokens for full windows
465
+ if end_idx > self.all_sequence_length:
466
+ # the input is shorter than the initial window size
467
+ end_idx = self.all_sequence_length
468
+ is_full_window = False
469
+ else:
470
+ is_full_window = True
471
+
472
+ # NOTE: in training, the entire sequence is input to the model at once
473
+ # In the last window, we do not need to append beacons because they will not be used at all
474
+ if self.training and end_idx == self.all_sequence_length:
475
+ next_start_idx = start_idx
476
+ is_full_window = False
477
+ raw_size_to_cache = -1
478
+ beacon_size = 0
479
+ compression_ratio = -1
480
+
481
+ # NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence
482
+ elif self.step_idx == 0 and self.beacon_skip_first is not None:
483
+ end_idx = start_idx + self.beacon_skip_first
484
+ assert end_idx <= self.all_sequence_length
485
+ next_start_idx = end_idx
486
+ is_full_window = True
487
+ raw_size_to_cache = -1
488
+ beacon_size = 0
489
+ compression_ratio = -1
490
+
491
+ # NOTE: we do not compress tokens after beacon_skip_last tokens
492
+ elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last:
493
+ end_idx = min(start_idx + self.beacon_window, self.all_sequence_length)
494
+ next_start_idx = end_idx
495
+ is_full_window = False
496
+ raw_size_to_cache = -1
497
+ beacon_size = 0
498
+ compression_ratio = -1
499
+
500
+ else:
501
+ #============================================#
502
+ # Set compression ratio
503
+ #============================================#
504
+ if self.config.beacon_pos == "append":
505
+ if is_full_window:
506
+ # determine compression ratio for the current window
507
+ beacon_stride = self.beacon_stride
508
+ compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
509
+
510
+ if compression_ratio > 0:
511
+ # the stride must be evenly divisible by compression_ratio
512
+ beacon_size = beacon_stride // compression_ratio
513
+ else:
514
+ # the raw activations are used as beacon activations
515
+ beacon_size = -1
516
+
517
+ # forward start_idx and end_idx
518
+ next_start_idx = start_idx + beacon_stride
519
+ # how many raw activations to save
520
+ raw_size_to_cache = end_idx - next_start_idx
521
+ else:
522
+ # no stride because the sequence has finished
523
+ next_start_idx = start_idx
524
+ # cache all raw activations
525
+ raw_size_to_cache = -1
526
+ beacon_size = 0
527
+ compression_ratio = 0
528
+
529
+ elif self.config.beacon_pos == "interleave":
530
+ # the number of raw tokens in the input_ids
531
+ input_size = end_idx - self.end_idx
532
+ # set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window
533
+ if self.is_full_window:
534
+ compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
535
+ self.interleave_compression_ratio = compression_ratio
536
+ else:
537
+ compression_ratio = self.interleave_compression_ratio
538
+
539
+ # the beacon size is non-zero even if the window is not full
540
+ if compression_ratio > 0:
541
+ # this number of beacon tokens will be inserted among the raw tokens
542
+ beacon_size = (input_size + self.interleave_remainder) // compression_ratio
543
+ else:
544
+ # the raw activations are used as beacon activations
545
+ beacon_size = -1
546
+
547
+ if is_full_window:
548
+ # move forward one window
549
+ next_start_idx = start_idx + self.beacon_stride
550
+ # no save raw activations
551
+ raw_size_to_cache = 0
552
+ else:
553
+ # no stride because the sequence has not finished
554
+ next_start_idx = start_idx
555
+ # cache all recent raw activations to be used in the next window
556
+ raw_size_to_cache = -1
557
+
558
+ #============================================#
559
+ # Slice out input_ids (raw tokens in the current window)
560
+ #============================================#
561
+ input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device)
562
+ attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device)
563
+ if self.all_labels is not None:
564
+ labels = self.all_labels[:, self.end_idx: end_idx].to(self._device)
565
+ else:
566
+ labels = None
567
+ batch_size = input_ids.shape[0]
568
+
569
+ #============================================#
570
+ # Insert beacon tokens if necessary.
571
+ #============================================#
572
+ # t1 = time.time()
573
+
574
+ if self.config.beacon_pos == "append":
575
+ # append beacons if necessary
576
+ if is_full_window and beacon_size > 0:
577
+ input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1)
578
+ # NOTE: prepend 1 to attention_mask because we have past_key_values
579
+ attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1)
580
+ if labels is not None:
581
+ labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1)
582
+
583
+ elif self.config.beacon_pos == "interleave":
584
+ input_len = input_ids.shape[1]
585
+ if beacon_size > 0:
586
+ # insert beacon tokens in between raw tokens
587
+ input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token)
588
+ raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device)
589
+ interleave_start_idx = compression_ratio - self.interleave_remainder
590
+ raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids)
591
+ input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids)
592
+ input_ids = input_ids_with_beacons
593
+ # attention mask
594
+ attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1)
595
+ attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask)
596
+ attention_mask = attention_mask_with_beacons
597
+ # labels
598
+ if labels is not None:
599
+ labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100)
600
+ labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels)
601
+ labels = labels_with_beacons
602
+
603
+ if compression_ratio > 0:
604
+ # update the reminder
605
+ self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio
606
+
607
+ # NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window
608
+ if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'):
609
+ labels[:] = -100
610
+
611
+ # t2 = time.time()
612
+
613
+ #============================================#
614
+ # Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens.
615
+ # The mask is applied on the inputs of the entire window, including the cached activations and the input_ids.
616
+ #============================================#
617
+ beacon_indices = (input_ids[0] == self.beacon_token).long()
618
+ if self.is_full_window:
619
+ self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device)
620
+ # the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids
621
+ beacon_indices = torch.cat([self.beacon_indices, beacon_indices])
622
+ # record the beacon_indices for the next window
623
+ self.beacon_indices = beacon_indices
624
+ if is_full_window and beacon_size == -1:
625
+ # NOTE: the first beacon_stride raw tokens serve as beacon tokens
626
+ # we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified
627
+ beacon_indices[:self.beacon_stride] = -1
628
+
629
+ # t3 = time.time()
630
+
631
+ #============================================#
632
+ # Prepare past_key_values.
633
+ # beacon_size: how many beacon tokens are there in the input_ids
634
+ # beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations)
635
+ #============================================#
636
+ past_key_values = []
637
+ for layer_idx in range(self.config.num_hidden_layers):
638
+ if ignore_memory:
639
+ key, value = None, None
640
+ else:
641
+ sink_key, sink_value = self.sink_activations[layer_idx]
642
+ beacon_key, beacon_value = self.beacon_activations[layer_idx]
643
+ raw_key, raw_value = self.raw_activations[layer_idx]
644
+
645
+ key = cat_tensor([
646
+ sink_key, beacon_key, raw_key,
647
+ ], dim=self.k_seq_dim)
648
+ value = cat_tensor([
649
+ sink_value, beacon_value, raw_value,
650
+ ], dim=self.v_seq_dim)
651
+
652
+ layer_past_key_values = (key, value, beacon_size, beacon_indices)
653
+ past_key_values.append(layer_past_key_values)
654
+
655
+ # t4 = time.time()
656
+
657
+ #============================================#
658
+ # Prepare attention_mask and position_ids.
659
+ #============================================#
660
+ first_key = past_key_values[0][0]
661
+ mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
662
+ if mem_size > 0:
663
+ attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1)
664
+
665
+ input_length = input_ids.shape[1]
666
+ position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1)
667
+
668
+ if self.config._attn_implementation == "flash_attention_2":
669
+ assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}."
670
+ if 0 in attention_mask:
671
+ pass
672
+ else:
673
+ attention_mask = None
674
+ elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0):
675
+ attention_mask = None
676
+ else:
677
+ attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids(
678
+ attention_mask,
679
+ position_ids,
680
+ mem_size,
681
+ beacon_size,
682
+ compression_ratio,
683
+ )
684
+
685
+ # t5 = time.time()
686
+
687
+ # print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}")
688
+
689
+ #============================================#
690
+ # Update necessary attributes.
691
+ #============================================#
692
+ # keep track of whether the current inputs is a full_window
693
+ self.is_full_window = is_full_window
694
+ # keep track of the raw_size_to_cache
695
+ self.raw_size_to_cache = raw_size_to_cache
696
+ # involked in self.output()
697
+ self.all_beacon_sizes.append(beacon_size)
698
+ # update start_idx and end_idx
699
+ # NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None
700
+ # Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx
701
+ self.start_idx = next_start_idx
702
+ self.end_idx = end_idx
703
+ self.step_idx += 1
704
+
705
+ # print(f"start_idx: {start_idx}")
706
+ # print(f"next_start_idx: {next_start_idx}")
707
+ # print(f"beacon_size: {beacon_size}")
708
+ # print(f"raw_size_to_cache: {raw_size_to_cache}")
709
+ # print(f"interleave_remainder:{self.interleave_remainder}")
710
+ # print(f"input_ids: {input_ids}")
711
+ # print(f"input_len: {input_len}")
712
+ # print(f"beacon_indices: {beacon_indices}")
713
+ # print(f"position_ids: {position_ids}")
714
+ # print(f"attention_mask:\n{attention_mask == 0}")
715
+ # x = input()
716
+ # if x == "s":
717
+ # return
718
+
719
+ return input_ids, attention_mask, position_ids, past_key_values, labels
720
+
721
+ def update_memory(self, past_key_values):
722
+ """
723
+ Accumulate beacon activations and raw activations.
724
+ """
725
+ for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values):
726
+ # NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
727
+ previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
728
+
729
+ if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None:
730
+ assert key.shape[self.k_seq_dim] == self.beacon_skip_first
731
+ assert value.shape[self.k_seq_dim] == self.beacon_skip_first
732
+ self.sink_activations[layer_idx] = [
733
+ key,
734
+ value,
735
+ ]
736
+ # NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations
737
+ continue
738
+
739
+ if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0:
740
+ # save the sink activations
741
+ # NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay
742
+ self.sink_activations[layer_idx] = [
743
+ slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim),
744
+ slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim),
745
+ ]
746
+
747
+ if not self.is_full_window:
748
+ # this means the current input does not fulfill a window
749
+ # thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
750
+ assert self.raw_size_to_cache == -1
751
+ raw_key = cat_tensor([
752
+ previous_raw_key,
753
+ key
754
+ ], dim=self.k_seq_dim)
755
+ raw_value = cat_tensor([
756
+ previous_raw_value,
757
+ value
758
+ ], dim=self.v_seq_dim)
759
+ self.raw_activations[layer_idx] = (raw_key, raw_value)
760
+
761
+ else:
762
+ # NOTE: use the correct previous_beacon_key and value!
763
+ previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx]
764
+
765
+ beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory(
766
+ key,
767
+ value,
768
+ previous_beacon_key,
769
+ previous_beacon_value,
770
+ previous_raw_key,
771
+ previous_raw_value,
772
+ beacon_indices,
773
+ )
774
+
775
+ self.beacon_activations[layer_idx] = (beacon_key, beacon_value)
776
+ self.raw_activations[layer_idx] = (raw_key, raw_value)
777
+
778
+ def update_loss(self, batch_loss, valid_token_num):
779
+ """
780
+ Accumulate loss for later perplexity computation and backward pass.
781
+ """
782
+ if self.batch_loss is None:
783
+ # NOTE: multiply valid_token_num because batch_loss is divided by it in advance
784
+ self.batch_loss = batch_loss * valid_token_num
785
+ self.valid_token_num = valid_token_num
786
+ else:
787
+ # NOTE: avoid in-place operations, otherwise there will be gradient errors in training
788
+ self.batch_loss = self.batch_loss + batch_loss * valid_token_num
789
+ self.valid_token_num = self.valid_token_num + valid_token_num
790
+
791
+ def output(self, model_outputs):
792
+ """
793
+ Override loss with accumulated loss. Update the next-token logits.
794
+ """
795
+ # override loss
796
+ if self.batch_loss is not None:
797
+ # here the batch_loss is the summation of all token losses in each element
798
+ loss = self.batch_loss.sum() / self.valid_token_num.sum()
799
+
800
+ # NOTE: prevent nan
801
+ batch_loss = self.batch_loss / self.valid_token_num
802
+ if (self.valid_token_num == 0).any():
803
+ batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.)
804
+
805
+ # NOTE: we must use dict to override values, otherwise trainer cannot find loss
806
+ model_outputs["loss"] = loss
807
+ model_outputs["batch_loss"] = batch_loss
808
+
809
+ # override last_hidden_states (used in generation)
810
+ beacon_size = self.all_beacon_sizes[-1]
811
+ # remove logits corresponding to beacon tokens
812
+ if beacon_size > 0:
813
+ logits = model_outputs["logits"]
814
+ beacon_indices = self.beacon_indices[-logits.shape[1]:]
815
+ model_outputs["logits"] = logits[:, beacon_indices == 0]
816
+
817
+ return model_outputs
818
+
819
+ def _make_4d_attention_mask_and_position_ids(
820
+ self,
821
+ attention_mask,
822
+ position_ids,
823
+ mem_size,
824
+ beacon_size,
825
+ compression_ratio,
826
+ ):
827
+ """
828
+ Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len).
829
+ """
830
+ tgt_size = attention_mask.size(-1) - mem_size
831
+ dtype = self.dtype
832
+ min_value = self.min_value
833
+ device = self._device
834
+ batch_size, src_size = attention_mask.size()
835
+
836
+ # square for memory, and lower triangular for input_ids
837
+ causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype)
838
+ mask_cond = torch.arange(causal_mask.size(-1), device=device)
839
+ causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0)
840
+ causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1)
841
+ causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size)
842
+ # 1 for non-padding tokens
843
+ expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size)
844
+ invert_mask = 1.0 - expand_mask
845
+ invert_mask.masked_fill_(invert_mask.bool(), min_value)
846
+
847
+ attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value)
848
+
849
+ if self.config.beacon_attn == "step-expansion":
850
+ # each beacon can attend to one more sub-interval than its predecessor
851
+
852
+ if self.config.beacon_pos == "append" and beacon_size > 0:
853
+ window_size = self.beacon_window
854
+ window_size_with_beacon = window_size + beacon_size
855
+ beacon_start_idx = -beacon_size
856
+ # batch_size, head_num, window_size
857
+ reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
858
+
859
+ # compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio
860
+ beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio
861
+ # 0, 1, 2, ..., window_size - 1
862
+ ordinal_arange = torch.arange(window_size, device=device)
863
+ # beacon_size, window_size
864
+ valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1)
865
+ # beacon_size, window_size
866
+ ordinal_attention_mask = torch.where(valid_pos, 0, min_value)
867
+ # NOTE: add reference attention_mask so that padding tokens are considered
868
+ ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
869
+
870
+ if self.config.beacon_attend_prev:
871
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
872
+ # the beacon token is next to the last ordinal token it attends to
873
+ ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
874
+ beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None]
875
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
876
+ else:
877
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
878
+ # the beacon token is next to the last ordinal token it attends to
879
+ ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
880
+ beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1
881
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
882
+
883
+ attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
884
+ attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
885
+
886
+ # NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids
887
+ elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any():
888
+ assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!"
889
+
890
+ beacon_indices = self.beacon_indices
891
+
892
+ cur_position_ids = position_ids[:, -len(beacon_indices):]
893
+ base_position = cur_position_ids[:, 0] - 1
894
+ # NOTE: alternate position so that the position of raw tokens are consistent
895
+ position_template = cur_position_ids.new_ones(cur_position_ids.shape)
896
+ position_template[:, compression_ratio + 1::compression_ratio + 1] = 0
897
+ cur_position_ids = base_position + position_template.cumsum(-1)
898
+ position_ids[:, -len(beacon_indices):] = cur_position_ids
899
+
900
+ cur_input_length = len(beacon_indices)
901
+ cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:]
902
+ # mask all beacon columns
903
+ cur_attention_mask[..., beacon_indices] = min_value
904
+ # beacon tokens can attend to themselves
905
+ input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:]
906
+ input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0
907
+
908
+ elif self.config.beacon_attn == "segmentation":
909
+ # each beacon can attend to its corresponding sub-interval
910
+
911
+ if self.config.beacon_pos == "append" and beacon_size > 0:
912
+ window_size = self.beacon_window
913
+ window_size_with_beacon = window_size + beacon_size
914
+ beacon_start_idx = -beacon_size
915
+ # batch_size, head_num, window_size
916
+ reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
917
+
918
+ # beacon_size, compression_ratio
919
+ indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1)
920
+ # beacon_size, window_size
921
+ ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value)
922
+ ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0)
923
+
924
+ # NOTE: add reference attention_mask so that padding tokens are considered
925
+ ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
926
+
927
+ if self.config.beacon_attend_prev:
928
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
929
+ # the beacon token is next to the last ordinal token it attends to
930
+ beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
931
+ beacon_position_ids = beacon_position_ids + torch.arange(beacon_size)
932
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
933
+ else:
934
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
935
+ # the beacon token is next to the last ordinal token it attends to
936
+ beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
937
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
938
+
939
+ attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
940
+ attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
941
+ # beacons of different ratios are blind to others
942
+ attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value
943
+
944
+ elif self.config.beacon_pos == "interleave":
945
+ raise NotImplementedError
946
+
947
+ elif self.config.beacon_attn == "full-coverage":
948
+ pass
949
+
950
+ return attention_mask, position_ids
951
+
952
+ def _extract_beacon_and_raw_memory(
953
+ self,
954
+ key,
955
+ value,
956
+ previous_beacon_key,
957
+ previous_beacon_value,
958
+ previous_raw_key,
959
+ previous_raw_value,
960
+ beacon_indices,
961
+ ):
962
+ """Extract beacon and raw memory from the returned key and value when the window is full."""
963
+ key = cat_tensor([
964
+ previous_raw_key,
965
+ key
966
+ ], dim=self.k_seq_dim)
967
+ value = cat_tensor([
968
+ previous_raw_value,
969
+ value
970
+ ], dim=self.v_seq_dim)
971
+
972
+ # NOTE: we use magic slice instead of boolean index here for efficiency
973
+ beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim)
974
+ beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim)
975
+
976
+ if self.config.beacon_accum:
977
+ beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim)
978
+ beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim)
979
+
980
+ if self.raw_size_to_cache > 0:
981
+ raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim)
982
+ raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim)
983
+
984
+ raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim)
985
+ raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim)
986
+
987
+ else:
988
+ raw_key = None
989
+ raw_value = None
990
+
991
+ return beacon_key, beacon_value, raw_key, raw_value
992
+
993
+
994
+ def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2):
995
+ if x is None:
996
+ return None
997
+ if end == 0:
998
+ return None
999
+ if start == x.shape[dim]:
1000
+ return None
1001
+ if start is not None and start == end:
1002
+ return None
1003
+ if dim == 2:
1004
+ if index is not None:
1005
+ return x[:, :, index]
1006
+ elif start is None and end is not None:
1007
+ if step is None:
1008
+ return x[:, :, :end, ...]
1009
+ else:
1010
+ return x[:, :, :end:step, ...]
1011
+ elif start is not None and end is None:
1012
+ if step is None:
1013
+ return x[:, :, start:, ...]
1014
+ else:
1015
+ return x[:, :, start::step, ...]
1016
+ elif start is not None and end is not None:
1017
+ if step is None:
1018
+ return x[:, :, start:end, ...]
1019
+ else:
1020
+ return x[:, :, start:end:step, ...]
1021
+ elif dim == 1:
1022
+ if index is not None:
1023
+ return x[:, :, index]
1024
+ elif start is None and end is not None:
1025
+ if step is None:
1026
+ return x[:, :end, ...]
1027
+ else:
1028
+ return x[:, :end:step, ...]
1029
+ elif start is not None and end is None:
1030
+ if step is None:
1031
+ return x[:, start:, ...]
1032
+ else:
1033
+ return x[:, start::step, ...]
1034
+ elif start is not None and end is not None:
1035
+ if step is None:
1036
+ return x[:, start:end, ...]
1037
+ else:
1038
+ return x[:, start:end:step, ...]
1039
+ else:
1040
+ raise NotImplementedError
1041
+
1042
+ def cat_tensor(list_of_tensors, dim=-1):
1043
+ list_of_tensors = [t for t in list_of_tensors if t is not None]
1044
+ if len(list_of_tensors) > 1:
1045
+ result = torch.cat(list_of_tensors, dim=dim)
1046
+ elif len(list_of_tensors) == 1:
1047
+ result = list_of_tensors[0]
1048
+ else:
1049
+ result = None
1050
+ return result
1051
+
1052
+ def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
1053
+ new_activations = []
1054
+ for key, value in activations:
1055
+ new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
1056
+ new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
1057
+ new_activations.append([new_key, new_value])
1058
+ return new_activations
1059
+
1060
+ def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
1061
+ assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
1062
+
1063
+ new_activations = []
1064
+ for layer_idx in range(len(list_of_activations[0])):
1065
+ keys = [x[layer_idx][0] for x in list_of_activations]
1066
+ values = [x[layer_idx][1] for x in list_of_activations]
1067
+
1068
+ new_key = cat_tensor(keys, dim=k_seq_dim)
1069
+ new_value = cat_tensor(values, dim=v_seq_dim)
1070
+ new_activations.append([new_key, new_value])
1071
+ return new_activations
1072
+
1073
+ def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
1074
+ """ Interleave main_activations and augment_activations according to main_span and augment_span.
1075
+
1076
+ Args:
1077
+ main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
1078
+ augment_span: a list of tuples (start_idx, end_idx)
1079
+ """
1080
+ assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
1081
+ assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
1082
+
1083
+ new_activations = []
1084
+ for layer_idx in range(len(main_activations)):
1085
+ main_key, main_value = main_activations[layer_idx]
1086
+ augment_key, augment_value = augment_activations[layer_idx]
1087
+
1088
+ sliced_keys = []
1089
+ sliced_values = []
1090
+
1091
+ augment_idx = 0
1092
+ for start, end in main_spans:
1093
+ if start is None and end is None:
1094
+ # this means the augment key/value should be plugged in
1095
+ augment_start, augment_end = augment_spans[augment_idx]
1096
+ sliced_key = slice_tensor(
1097
+ augment_key,
1098
+ start=augment_start,
1099
+ end=augment_end,
1100
+ dim=k_seq_dim
1101
+ ).to(device)
1102
+ sliced_value = slice_tensor(
1103
+ augment_value,
1104
+ start=augment_start,
1105
+ end=augment_end,
1106
+ dim=v_seq_dim
1107
+ ).to(device)
1108
+
1109
+ else:
1110
+ sliced_key = slice_tensor(
1111
+ main_key,
1112
+ start=start,
1113
+ end=end,
1114
+ dim=k_seq_dim
1115
+ )
1116
+ sliced_value = slice_tensor(
1117
+ main_value,
1118
+ start=start,
1119
+ end=end,
1120
+ dim=v_seq_dim
1121
+ )
1122
+
1123
+ sliced_keys.append(sliced_key)
1124
+ sliced_values.append(sliced_value)
1125
+
1126
+ new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
1127
+ new_value = cat_tensor(sliced_values, dim=v_seq_dim)
1128
+ new_activations.append([new_key, new_value])
1129
+
1130
+ return new_activations
1131
+
1132
+ def softmax(x:np.ndarray, axis=-1, temperature=1):
1133
+ if isinstance(x, list):
1134
+ x = np.array(x)
1135
+ x = x / temperature
1136
+ x = x - x.max(axis=axis, keepdims=True)
1137
+ y = np.exp(x)
1138
+ return y / y.sum(axis=axis, keepdims=True)
1139
+
1140
+ def l1_norm(x):
1141
+ sum_x = sum(x)
1142
+ x = [y/sum_x for y in x]
1143
+ return x
modeling_mistral.py ADDED
@@ -0,0 +1,1297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Mistral model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache
34
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from transformers.integrations import is_deepspeed_zero3_enabled
45
+ from .configuration_mistral import MistralConfig
46
+
47
+
48
+ if is_flash_attn_2_available():
49
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
50
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
51
+
52
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
53
+
54
+ from .modeling_beacon import Memory
55
+ from .modeling_utils import optional_grad_ctx, compute_loss, get_rope, ModelOutput
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = "MistralConfig"
61
+
62
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ # Copied from transformers.models.llama.modeling_llama.MistralRMSNorm with Mistral->Mistral
76
+ class MistralRMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ MistralRMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ hidden_states = hidden_states.to(torch.float32)
88
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+ return self.weight * hidden_states.to(input_dtype)
91
+
92
+
93
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Mistral
94
+ class MistralMLP(nn.Module):
95
+ def __init__(self, config):
96
+ super().__init__()
97
+ self.config = config
98
+ self.hidden_size = config.hidden_size
99
+ self.intermediate_size = config.intermediate_size
100
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
101
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
102
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
103
+ self.act_fn = ACT2FN[config.hidden_act]
104
+
105
+ def forward(self, x):
106
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
107
+ return down_proj
108
+
109
+
110
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
111
+ """
112
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
113
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
114
+ """
115
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
116
+ if n_rep == 1:
117
+ return hidden_states
118
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
119
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
120
+
121
+
122
+ class MistralAttention(nn.Module):
123
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
124
+
125
+ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
126
+ super().__init__()
127
+ self.config = config
128
+ self.layer_idx = layer_idx
129
+ if layer_idx is None:
130
+ logger.warning_once(
131
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
132
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
133
+ "when creating this class."
134
+ )
135
+
136
+ self.attention_dropout = config.attention_dropout
137
+ self.hidden_size = config.hidden_size
138
+ self.num_heads = config.num_attention_heads
139
+ self.head_dim = self.hidden_size // self.num_heads
140
+ self.num_key_value_heads = config.num_key_value_heads
141
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
142
+ self.max_position_embeddings = config.max_position_embeddings
143
+ self.rope_theta = config.rope_theta
144
+ self.is_causal = True
145
+
146
+ if (self.head_dim * self.num_heads) != self.hidden_size:
147
+ raise ValueError(
148
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
149
+ f" and `num_heads`: {self.num_heads})."
150
+ )
151
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
152
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
153
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
154
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
155
+
156
+ self.rotary_emb = get_rope(self.head_dim, config.rope_theta, config.max_position_embeddings, getattr(config, "rope_scaling", None))
157
+
158
+ # NOTE: add extra parameters for beacon tokens
159
+ # skip post initialization to speed up loading
160
+ if "q" in config.beacon_param:
161
+ self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None)
162
+ # NOTE: initialize the beacon parameters as zero
163
+ self.beacon_q_proj.weight.data.zero_()
164
+ self.beacon_q_proj._is_hf_initialized = True
165
+ if "k" in config.beacon_param:
166
+ self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None)
167
+ self.beacon_k_proj.weight.data.zero_()
168
+ self.beacon_k_proj._is_hf_initialized = True
169
+ if "v" in config.beacon_param:
170
+ self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None)
171
+ self.beacon_v_proj.weight.data.zero_()
172
+ self.beacon_v_proj._is_hf_initialized = True
173
+ if "o" in config.beacon_param:
174
+ self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None)
175
+ self.beacon_o_proj.weight.data.zero_()
176
+ self.beacon_o_proj._is_hf_initialized = True
177
+
178
+ def _init_beacon_proj(self, missing_keys):
179
+ """Initialize the beacon projection weight with that of the ordinal projection."""
180
+ beacon_param = self.config.beacon_param
181
+
182
+ if is_deepspeed_zero3_enabled():
183
+ # FIXME: after deepspeed initialization, some weights becomes non-zero
184
+ # For Mistral, there are rows that are full of zeros
185
+ # For Mistral, there are values bigger than 1e29...
186
+
187
+ import deepspeed
188
+ if "q" in beacon_param:
189
+ params = [self.beacon_q_proj.weight, self.q_proj.weight]
190
+ if self.q_proj.bias is not None:
191
+ params.extend([self.beacon_q_proj.bias, self.q_proj.bias])
192
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
193
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
194
+ if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any():
195
+ self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
196
+ if self.q_proj.bias is not None:
197
+ self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
198
+ if "k" in beacon_param:
199
+ params = [self.beacon_k_proj.weight, self.k_proj.weight]
200
+ if self.k_proj.bias is not None:
201
+ params.extend([self.beacon_k_proj.bias, self.k_proj.bias])
202
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
203
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
204
+ if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any():
205
+ self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
206
+ if self.k_proj.bias is not None:
207
+ self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
208
+ if "v" in beacon_param:
209
+ params = [self.beacon_v_proj.weight, self.v_proj.weight]
210
+ if self.v_proj.bias is not None:
211
+ params.extend([self.beacon_v_proj.bias, self.v_proj.bias])
212
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
213
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
214
+ if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any():
215
+ self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
216
+ if self.v_proj.bias is not None:
217
+ self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
218
+ if "o" in beacon_param:
219
+ params = [self.beacon_o_proj.weight, self.o_proj.weight]
220
+ if self.o_proj.bias is not None:
221
+ params.extend([self.beacon_o_proj.bias, self.o_proj.bias])
222
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
223
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
224
+ if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any():
225
+ self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
226
+ if self.o_proj.bias is not None:
227
+ self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
228
+ else:
229
+ # only copy the value in-place, without tieing the weight
230
+ if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys):
231
+ # FIXME: some beacon weights are not initialized as zero for mistral model, why?
232
+ # if (self.beacon_q_proj.weight == 0).all():
233
+ self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
234
+ if self.q_proj.bias is not None:
235
+ self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
236
+ if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys):
237
+ # if (self.beacon_k_proj.weight == 0).all():
238
+ self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
239
+ if self.k_proj.bias is not None:
240
+ self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
241
+ if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys):
242
+ # if (self.beacon_v_proj.weight == 0).all():
243
+ self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
244
+ if self.v_proj.bias is not None:
245
+ self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
246
+ if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys):
247
+ # if (self.beacon_o_proj.weight == 0).all():
248
+ self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
249
+ if self.o_proj.bias is not None:
250
+ self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
251
+
252
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
253
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
254
+
255
+ def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices):
256
+ if beacon_size > 0:
257
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
258
+ cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
259
+
260
+ # NOTE: there is slight redundant computation because ordinal tokens should never be projected by beacon matrices, but we are doing this for efficiency
261
+ if "q" in self.config.beacon_param:
262
+ ordinal_query_states = self.q_proj(hidden_states)
263
+ beacon_query_states = self.beacon_q_proj(hidden_states)
264
+ query_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_query_states, beacon_query_states)
265
+ if (cur_beacon_indices == 2).any():
266
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
267
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
268
+ query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
269
+ else:
270
+ query_states = self.q_proj(hidden_states)
271
+
272
+ if "k" in self.config.beacon_param:
273
+ ordinal_key_states = self.k_proj(hidden_states)
274
+ beacon_key_states = self.beacon_k_proj(hidden_states)
275
+ key_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_key_states, beacon_key_states)
276
+ if (cur_beacon_indices == 2).any():
277
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
278
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
279
+ key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
280
+ else:
281
+ key_states = self.k_proj(hidden_states)
282
+
283
+ if "v" in self.config.beacon_param:
284
+ ordinal_value_states = self.v_proj(hidden_states)
285
+ beacon_value_states = self.beacon_v_proj(hidden_states)
286
+ value_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_value_states, beacon_value_states)
287
+ if (cur_beacon_indices == 2).any():
288
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
289
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
290
+ value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
291
+ else:
292
+ value_states = self.v_proj(hidden_states)
293
+
294
+ else:
295
+ query_states = self.q_proj(hidden_states)
296
+ key_states = self.k_proj(hidden_states)
297
+ value_states = self.v_proj(hidden_states)
298
+
299
+ return query_states, key_states, value_states
300
+
301
+ def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices):
302
+ if beacon_size > 0:
303
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
304
+ cur_beacon_indices = beacon_indices[-attn_output.shape[1]:]
305
+
306
+ if "o" in self.config.beacon_param:
307
+ ordinal_attn_output = self.o_proj(attn_output)
308
+ beacon_attn_output = self.beacon_o_proj(attn_output)
309
+ attn_output = torch.where((cur_beacon_indices == 0)[:, None], ordinal_attn_output, beacon_attn_output)
310
+ else:
311
+ attn_output = self.o_proj(attn_output)
312
+ else:
313
+ attn_output = self.o_proj(attn_output)
314
+ return attn_output
315
+
316
+ def forward(
317
+ self,
318
+ hidden_states: torch.Tensor,
319
+ attention_mask: Optional[torch.Tensor] = None,
320
+ position_ids: Optional[torch.LongTensor] = None,
321
+ past_key_value: Optional[Cache] = None,
322
+ output_attentions: bool = False,
323
+ use_cache: bool = False,
324
+ **kwargs,
325
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
326
+ if "padding_mask" in kwargs:
327
+ warnings.warn(
328
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
329
+ )
330
+
331
+ bsz, q_len, _ = hidden_states.size()
332
+ kv_seq_len = hidden_states.shape[-2]
333
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
334
+
335
+ if past_key is not None:
336
+ past_seq_len = past_key.shape[2]
337
+ kv_seq_len += past_seq_len
338
+ else:
339
+ past_seq_len = 0
340
+
341
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
342
+
343
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
344
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
345
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
346
+
347
+ # return keys and values before rope
348
+ # NOTE: incrementally return keys and values for efficiency
349
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
350
+
351
+ if past_key is not None:
352
+ # reuse k, v, self_attention
353
+ key_states = torch.cat([past_key, key_states], dim=2)
354
+ value_states = torch.cat([past_value, value_states], dim=2)
355
+
356
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
357
+
358
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
359
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
360
+
361
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
362
+
363
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
364
+ raise ValueError(
365
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
366
+ f" {attn_weights.size()}"
367
+ )
368
+
369
+ if attention_mask is not None:
370
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
371
+ raise ValueError(
372
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
373
+ )
374
+ attn_weights = attn_weights + attention_mask
375
+
376
+ # upcast attention to fp32
377
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
378
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
379
+ attn_output = torch.matmul(attn_weights, value_states)
380
+
381
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
382
+ raise ValueError(
383
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
384
+ f" {attn_output.size()}"
385
+ )
386
+
387
+ attn_output = attn_output.transpose(1, 2).contiguous()
388
+
389
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
390
+
391
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
392
+
393
+ if not output_attentions:
394
+ attn_weights = None
395
+
396
+ return attn_output, attn_weights, past_key_value
397
+
398
+
399
+ class MistralSdpaAttention(MistralAttention):
400
+ """
401
+ Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
402
+ `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
403
+ SDPA API.
404
+ """
405
+
406
+ # Adapted from MistralAttention.forward
407
+ def forward(
408
+ self,
409
+ hidden_states: torch.Tensor,
410
+ attention_mask: Optional[torch.Tensor] = None,
411
+ position_ids: Optional[torch.LongTensor] = None,
412
+ past_key_value: Optional[Cache] = None,
413
+ output_attentions: bool = False,
414
+ use_cache: bool = False,
415
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
416
+ if output_attentions:
417
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
418
+ logger.warning_once(
419
+ "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
420
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
421
+ )
422
+ return super().forward(
423
+ hidden_states=hidden_states,
424
+ attention_mask=attention_mask,
425
+ position_ids=position_ids,
426
+ past_key_value=past_key_value,
427
+ output_attentions=output_attentions,
428
+ use_cache=use_cache,
429
+ )
430
+ bsz, q_len, _ = hidden_states.size()
431
+ kv_seq_len = hidden_states.shape[-2]
432
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
433
+ if past_key is not None:
434
+ past_seq_len = past_key.shape[2]
435
+ kv_seq_len += past_seq_len
436
+ else:
437
+ past_seq_len = 0
438
+
439
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
440
+
441
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
442
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
443
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
444
+
445
+ # return keys and values before rope
446
+ # NOTE: incrementally return keys and values for efficiency
447
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
448
+
449
+ if past_key is not None:
450
+ # reuse k, v, self_attention
451
+ key_states = torch.cat([past_key, key_states], dim=2)
452
+ value_states = torch.cat([past_value, value_states], dim=2)
453
+
454
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
455
+
456
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
457
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
458
+
459
+ if attention_mask is not None:
460
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
461
+ raise ValueError(
462
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
463
+ )
464
+
465
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
466
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
467
+ if query_states.device.type == "cuda" and attention_mask is not None:
468
+ query_states = query_states.contiguous()
469
+ key_states = key_states.contiguous()
470
+ value_states = value_states.contiguous()
471
+
472
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
473
+ query_states,
474
+ key_states,
475
+ value_states,
476
+ attn_mask=attention_mask,
477
+ dropout_p=self.attention_dropout if self.training else 0.0,
478
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
479
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
480
+ )
481
+
482
+ attn_output = attn_output.transpose(1, 2).contiguous()
483
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
484
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
485
+
486
+ return attn_output, None, past_key_value
487
+
488
+
489
+ class MistralFlashAttention2(MistralAttention):
490
+ """
491
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
492
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
493
+ flash attention and deal with padding tokens in case the input contains any of them.
494
+ """
495
+
496
+ def __init__(self, *args, **kwargs):
497
+ super().__init__(*args, **kwargs)
498
+
499
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
500
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
501
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
502
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
503
+
504
+ def forward(
505
+ self,
506
+ hidden_states: torch.Tensor,
507
+ attention_mask: Optional[torch.LongTensor] = None,
508
+ position_ids: Optional[torch.LongTensor] = None,
509
+ past_key_value: Optional[Cache] = None,
510
+ output_attentions: bool = False,
511
+ use_cache: bool = False,
512
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
513
+ output_attentions = False
514
+
515
+ bsz, q_len, _ = hidden_states.size()
516
+ kv_seq_len = hidden_states.shape[-2]
517
+
518
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
519
+ if past_key is not None:
520
+ past_seq_len = past_key.shape[2]
521
+ kv_seq_len += past_seq_len
522
+ else:
523
+ past_seq_len = 0
524
+
525
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
526
+
527
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
528
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
529
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
530
+
531
+ # return keys and values before rope
532
+ # NOTE: incrementally return keys and values for efficiency
533
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
534
+
535
+ if past_key is not None:
536
+ # reuse k, v, self_attention
537
+ key_states = torch.cat([past_key, key_states], dim=2)
538
+ value_states = torch.cat([past_value, value_states], dim=2)
539
+
540
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
541
+
542
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
543
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
544
+
545
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
546
+ # to be able to avoid many of these transpose/reshape/view.
547
+ query_states = query_states.transpose(1, 2)
548
+ key_states = key_states.transpose(1, 2)
549
+ value_states = value_states.transpose(1, 2)
550
+
551
+ dropout_rate = self.attention_dropout if self.training else 0.0
552
+
553
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
554
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
555
+ # cast them back in the correct dtype just to be sure everything works as expected.
556
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
557
+ # in fp32. (MistralRMSNorm handles it correctly)
558
+
559
+ input_dtype = query_states.dtype
560
+ if input_dtype == torch.float32:
561
+ if torch.is_autocast_enabled():
562
+ target_dtype = torch.get_autocast_gpu_dtype()
563
+ # Handle the case where the model is quantized
564
+ elif hasattr(self.config, "_pre_quantization_dtype"):
565
+ target_dtype = self.config._pre_quantization_dtype
566
+ else:
567
+ target_dtype = self.q_proj.weight.dtype
568
+
569
+ logger.warning_once(
570
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
571
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
572
+ f" {target_dtype}."
573
+ )
574
+
575
+ query_states = query_states.to(target_dtype)
576
+ key_states = key_states.to(target_dtype)
577
+ value_states = value_states.to(target_dtype)
578
+
579
+ attn_output = self._flash_attention_forward(
580
+ query_states,
581
+ key_states,
582
+ value_states,
583
+ attention_mask,
584
+ q_len,
585
+ dropout=dropout_rate
586
+ )
587
+
588
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
589
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
590
+
591
+ if not output_attentions:
592
+ attn_weights = None
593
+
594
+ return attn_output, attn_weights, past_key_value
595
+
596
+ def _flash_attention_forward(
597
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
598
+ ):
599
+ """
600
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
601
+ first unpad the input, then computes the attention scores and pad the final attention scores.
602
+
603
+ Args:
604
+ query_states (`torch.Tensor`):
605
+ Input query states to be passed to Flash Attention API
606
+ key_states (`torch.Tensor`):
607
+ Input key states to be passed to Flash Attention API
608
+ value_states (`torch.Tensor`):
609
+ Input value states to be passed to Flash Attention API
610
+ attention_mask (`torch.Tensor`):
611
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
612
+ position of padding tokens and 1 for the position of non-padding tokens.
613
+ dropout (`float`):
614
+ Attention dropout
615
+ softmax_scale (`float`, *optional*):
616
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
617
+ """
618
+ if not self._flash_attn_uses_top_left_mask:
619
+ causal = self.is_causal
620
+ else:
621
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MistralFlashAttention2 __init__.
622
+ causal = self.is_causal and query_length != 1
623
+
624
+ # Contains at least one padding token in the sequence
625
+ if attention_mask is not None:
626
+ batch_size = query_states.shape[0]
627
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
628
+ query_states, key_states, value_states, attention_mask, query_length
629
+ )
630
+
631
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
632
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
633
+
634
+ attn_output_unpad = flash_attn_varlen_func(
635
+ query_states,
636
+ key_states,
637
+ value_states,
638
+ cu_seqlens_q=cu_seqlens_q,
639
+ cu_seqlens_k=cu_seqlens_k,
640
+ max_seqlen_q=max_seqlen_in_batch_q,
641
+ max_seqlen_k=max_seqlen_in_batch_k,
642
+ dropout_p=dropout,
643
+ softmax_scale=softmax_scale,
644
+ causal=causal,
645
+ )
646
+
647
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
648
+ else:
649
+ attn_output = flash_attn_func(
650
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
651
+ )
652
+
653
+ return attn_output
654
+
655
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
656
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
657
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
658
+
659
+ key_layer = index_first_axis(
660
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
661
+ )
662
+ value_layer = index_first_axis(
663
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
664
+ )
665
+ if query_length == kv_seq_len:
666
+ query_layer = index_first_axis(
667
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
668
+ )
669
+ cu_seqlens_q = cu_seqlens_k
670
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
671
+ indices_q = indices_k
672
+ elif query_length == 1:
673
+ max_seqlen_in_batch_q = 1
674
+ cu_seqlens_q = torch.arange(
675
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
676
+ ) # There is a memcpy here, that is very bad.
677
+ indices_q = cu_seqlens_q[:-1]
678
+ query_layer = query_layer.squeeze(1)
679
+ else:
680
+ # The -q_len: slice assumes left padding.
681
+ attention_mask = attention_mask[:, -query_length:]
682
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
683
+
684
+ return (
685
+ query_layer,
686
+ key_layer,
687
+ value_layer,
688
+ indices_q,
689
+ (cu_seqlens_q, cu_seqlens_k),
690
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
691
+ )
692
+
693
+
694
+ MISTRAL_ATTENTION_CLASSES = {
695
+ "eager": MistralAttention,
696
+ "sdpa": MistralSdpaAttention,
697
+ "flash_attention_2": MistralFlashAttention2,
698
+ }
699
+
700
+
701
+ class MistralDecoderLayer(nn.Module):
702
+ def __init__(self, config: MistralConfig, layer_idx: int):
703
+ super().__init__()
704
+ self.hidden_size = config.hidden_size
705
+
706
+ if config.sliding_window is not None and config._attn_implementation != "flash_attention_2":
707
+ logger.warning_once(
708
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
709
+ "unexpected results may be encountered."
710
+ )
711
+ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
712
+
713
+ self.mlp = MistralMLP(config)
714
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
715
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
716
+
717
+ def forward(
718
+ self,
719
+ hidden_states: torch.Tensor,
720
+ attention_mask: Optional[torch.Tensor] = None,
721
+ position_ids: Optional[torch.LongTensor] = None,
722
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
723
+ output_attentions: Optional[bool] = False,
724
+ use_cache: Optional[bool] = False,
725
+ **kwargs,
726
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
727
+ """
728
+ Args:
729
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
730
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
731
+ `(batch, sequence_length)` where padding elements are indicated by 0.
732
+ output_attentions (`bool`, *optional*):
733
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
734
+ returned tensors for more detail.
735
+ use_cache (`bool`, *optional*):
736
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
737
+ (see `past_key_values`).
738
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
739
+ """
740
+ if "padding_mask" in kwargs:
741
+ warnings.warn(
742
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
743
+ )
744
+
745
+ residual = hidden_states
746
+
747
+ hidden_states = self.input_layernorm(hidden_states)
748
+
749
+ # Self Attention
750
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
751
+ hidden_states=hidden_states,
752
+ attention_mask=attention_mask,
753
+ position_ids=position_ids,
754
+ past_key_value=past_key_value,
755
+ output_attentions=output_attentions,
756
+ use_cache=use_cache,
757
+ )
758
+ hidden_states = residual + hidden_states
759
+
760
+ # Fully Connected
761
+ residual = hidden_states
762
+ hidden_states = self.post_attention_layernorm(hidden_states)
763
+ hidden_states = self.mlp(hidden_states)
764
+ hidden_states = residual + hidden_states
765
+
766
+ outputs = (hidden_states,)
767
+
768
+ if output_attentions:
769
+ outputs += (self_attn_weights,)
770
+
771
+ if use_cache:
772
+ outputs += (present_key_value,)
773
+
774
+ return outputs
775
+
776
+
777
+ MISTRAL_START_DOCSTRING = r"""
778
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
779
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
780
+ etc.)
781
+
782
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
783
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
784
+ and behavior.
785
+
786
+ Parameters:
787
+ config ([`MistralConfig`]):
788
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
789
+ load the weights associated with the model, only the configuration. Check out the
790
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
791
+ """
792
+
793
+
794
+ @add_start_docstrings(
795
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
796
+ MISTRAL_START_DOCSTRING,
797
+ )
798
+ class MistralPreTrainedModel(PreTrainedModel):
799
+ config_class = MistralConfig
800
+ base_model_prefix = "model"
801
+ supports_gradient_checkpointing = True
802
+ _no_split_modules = ["MistralDecoderLayer"]
803
+ _skip_keys_device_placement = "past_key_values"
804
+ _supports_flash_attn_2 = True
805
+ _supports_sdpa = True
806
+ _supports_cache_class = True
807
+
808
+ def _init_weights(self, module):
809
+ std = self.config.initializer_range
810
+ if isinstance(module, nn.Linear):
811
+ module.weight.data.normal_(mean=0.0, std=std)
812
+ if module.bias is not None:
813
+ module.bias.data.zero_()
814
+ elif isinstance(module, nn.Embedding):
815
+ module.weight.data.normal_(mean=0.0, std=std)
816
+ if module.padding_idx is not None:
817
+ module.weight.data[module.padding_idx].zero_()
818
+
819
+
820
+ MISTRAL_INPUTS_DOCSTRING = r"""
821
+ Args:
822
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
823
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
824
+ it.
825
+
826
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
827
+ [`PreTrainedTokenizer.__call__`] for details.
828
+
829
+ [What are input IDs?](../glossary#input-ids)
830
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
831
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
832
+
833
+ - 1 for tokens that are **not masked**,
834
+ - 0 for tokens that are **masked**.
835
+
836
+ [What are attention masks?](../glossary#attention-mask)
837
+
838
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
839
+ [`PreTrainedTokenizer.__call__`] for details.
840
+
841
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
842
+ `past_key_values`).
843
+
844
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
845
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
846
+ information on the default strategy.
847
+
848
+ - 1 indicates the head is **not masked**,
849
+ - 0 indicates the head is **masked**.
850
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
851
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
852
+ config.n_positions - 1]`.
853
+
854
+ [What are position IDs?](../glossary#position-ids)
855
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
856
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
857
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
858
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
859
+
860
+ Two formats are allowed:
861
+ - a [`~cache_utils.Cache`] instance;
862
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
863
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
864
+ cache format.
865
+
866
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
867
+ legacy cache format will be returned.
868
+
869
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
870
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
871
+ of shape `(batch_size, sequence_length)`.
872
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
873
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
874
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
875
+ model's internal embedding lookup matrix.
876
+ use_cache (`bool`, *optional*):
877
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
878
+ `past_key_values`).
879
+ output_attentions (`bool`, *optional*):
880
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
881
+ tensors for more detail.
882
+ output_hidden_states (`bool`, *optional*):
883
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
884
+ more detail.
885
+ return_dict (`bool`, *optional*):
886
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
887
+ """
888
+
889
+
890
+ @add_start_docstrings(
891
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
892
+ MISTRAL_START_DOCSTRING,
893
+ )
894
+ class MistralModel(MistralPreTrainedModel):
895
+ """
896
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
897
+
898
+ Args:
899
+ config: MistralConfig
900
+ """
901
+
902
+ def __init__(self, config: MistralConfig):
903
+ super().__init__(config)
904
+ self.padding_idx = config.pad_token_id
905
+ self.vocab_size = config.vocab_size
906
+
907
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
908
+
909
+ # BEACON: add beacon embedding
910
+ self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx)
911
+ self.beacon_embed_tokens._is_hf_initialized = True
912
+
913
+ self.layers = nn.ModuleList(
914
+ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
915
+ )
916
+ self._attn_implementation = config._attn_implementation
917
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
918
+
919
+ self.gradient_checkpointing = False
920
+ # Initialize weights and apply final processing
921
+ self.post_init()
922
+
923
+ def _init_beacon_embed(self, missing_keys):
924
+ """Initialize the beacon token embedding with that of the eos token."""
925
+ if is_deepspeed_zero3_enabled():
926
+ import deepspeed
927
+ params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight]
928
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
929
+ # deepspeed will initialize the parameters to zero
930
+ if (self.beacon_embed_tokens.weight == 0).all():
931
+ if self.config.beacon_embed_init == "bos":
932
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
933
+ elif self.config.beacon_embed_init == "eos":
934
+ if isinstance(self.config.eos_token_id, list):
935
+ eos_token_id = self.config.eos_token_id[0]
936
+ else:
937
+ eos_token_id = self.config.eos_token_id
938
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
939
+ else:
940
+ raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
941
+ else:
942
+ if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys):
943
+ if self.config.beacon_embed_init == "bos":
944
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
945
+ elif self.config.beacon_embed_init == "eos":
946
+ if isinstance(self.config.eos_token_id, list):
947
+ eos_token_id = self.config.eos_token_id[0]
948
+ else:
949
+ eos_token_id = self.config.eos_token_id
950
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
951
+ else:
952
+ raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
953
+
954
+ def get_input_embeddings(self):
955
+ return self.embed_tokens
956
+
957
+ def set_input_embeddings(self, value):
958
+ self.embed_tokens = value
959
+
960
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
961
+ def forward(
962
+ self,
963
+ input_ids: torch.LongTensor = None,
964
+ attention_mask: Optional[torch.Tensor] = None,
965
+ position_ids: Optional[torch.LongTensor] = None,
966
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
967
+ inputs_embeds: Optional[torch.FloatTensor] = None,
968
+ use_cache: Optional[bool] = None,
969
+ output_attentions: Optional[bool] = None,
970
+ output_hidden_states: Optional[bool] = None,
971
+ return_dict: Optional[bool] = None,
972
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
973
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
974
+ output_hidden_states = (
975
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
976
+ )
977
+ # BEACON: always use cache
978
+ use_cache = True
979
+
980
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
981
+
982
+ # retrieve input_ids and inputs_embeds
983
+ if input_ids is not None and inputs_embeds is not None:
984
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
985
+ elif input_ids is not None:
986
+ batch_size, seq_length = input_ids.shape[:2]
987
+ elif inputs_embeds is not None:
988
+ batch_size, seq_length = inputs_embeds.shape[:2]
989
+ else:
990
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
991
+
992
+ past_key, past_value, beacon_size, beacon_indices = past_key_values[0]
993
+
994
+ # BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients
995
+ if beacon_size > 0:
996
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
997
+ cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
998
+
999
+ ordinal_input_ids = input_ids[:, cur_beacon_indices == 0]
1000
+ beacon_input_ids = input_ids[:, cur_beacon_indices > 0]
1001
+ ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids)
1002
+ beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
1003
+ # create a new embedding tensor
1004
+ inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1])
1005
+ inputs_embeds[:, cur_beacon_indices == 0] = ordinal_inputs_embeds
1006
+ inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
1007
+
1008
+ else:
1009
+ inputs_embeds = self.embed_tokens(input_ids)
1010
+
1011
+ # embed positions
1012
+ hidden_states = inputs_embeds
1013
+
1014
+ # print(f"input_ids: {input_ids}")
1015
+ # print(f"beacon_indices: {beacon_indices}")
1016
+ # print(f"position_ids: {position_ids}")
1017
+ # print(f"attention_mask:\n{attention_mask == 0}")
1018
+ # x = input()
1019
+ # if x == "s":
1020
+ # return
1021
+
1022
+ # decoder layers
1023
+ all_hidden_states = () if output_hidden_states else None
1024
+ all_self_attns = () if output_attentions else None
1025
+ # BEACON: still use tuple to organize cache
1026
+ next_decoder_cache = () if use_cache else None
1027
+
1028
+ for idx, decoder_layer in enumerate(self.layers):
1029
+ if output_hidden_states:
1030
+ all_hidden_states += (hidden_states,)
1031
+
1032
+ # BEACON: slice out the past_key_value of the corresponding layer
1033
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1034
+
1035
+ if self.gradient_checkpointing and self.training:
1036
+ layer_outputs = self._gradient_checkpointing_func(
1037
+ decoder_layer.__call__,
1038
+ hidden_states,
1039
+ attention_mask,
1040
+ position_ids,
1041
+ past_key_value,
1042
+ output_attentions,
1043
+ use_cache,
1044
+ )
1045
+ else:
1046
+ layer_outputs = decoder_layer(
1047
+ hidden_states,
1048
+ attention_mask=attention_mask,
1049
+ position_ids=position_ids,
1050
+ past_key_value=past_key_value,
1051
+ output_attentions=output_attentions,
1052
+ use_cache=use_cache,
1053
+ )
1054
+
1055
+ hidden_states = layer_outputs[0]
1056
+
1057
+ if use_cache:
1058
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1059
+
1060
+ if output_attentions:
1061
+ all_self_attns += (layer_outputs[1],)
1062
+
1063
+ hidden_states = self.norm(hidden_states)
1064
+
1065
+ # add hidden states from the last decoder layer
1066
+ if output_hidden_states:
1067
+ all_hidden_states += (hidden_states,)
1068
+
1069
+ next_cache = next_decoder_cache if use_cache else None
1070
+
1071
+ if not return_dict:
1072
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1073
+ return BaseModelOutputWithPast(
1074
+ last_hidden_state=hidden_states,
1075
+ past_key_values=next_cache,
1076
+ hidden_states=all_hidden_states,
1077
+ attentions=all_self_attns,
1078
+ )
1079
+
1080
+
1081
+ class MistralForCausalLM(MistralPreTrainedModel):
1082
+ _tied_weights_keys = ["lm_head.weight"]
1083
+
1084
+ def __init__(self, config):
1085
+ super().__init__(config)
1086
+ self.model = MistralModel(config)
1087
+ self.vocab_size = config.vocab_size
1088
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1089
+ # Initialize weights and apply final processing
1090
+ self.post_init()
1091
+
1092
+ def get_input_embeddings(self):
1093
+ return self.model.embed_tokens
1094
+
1095
+ def set_input_embeddings(self, value):
1096
+ self.model.embed_tokens = value
1097
+
1098
+ def get_output_embeddings(self):
1099
+ return self.lm_head
1100
+
1101
+ def set_output_embeddings(self, new_embeddings):
1102
+ self.lm_head = new_embeddings
1103
+
1104
+ def set_decoder(self, decoder):
1105
+ self.model = decoder
1106
+
1107
+ def get_decoder(self):
1108
+ return self.model
1109
+
1110
+ @classmethod
1111
+ def from_pretrained(cls, *args, **kwargs):
1112
+ """Override the default from_pretrained to extend vocab size according to beacon_size."""
1113
+ kwargs.update(output_loading_info=True)
1114
+ model, loading_info = super().from_pretrained(*args, **kwargs)
1115
+
1116
+ # NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading
1117
+ config = model.config
1118
+ model.memory = Memory(
1119
+ model_config=config,
1120
+ k_seq_dim=2,
1121
+ v_seq_dim=2,
1122
+ )
1123
+
1124
+ missing_keys = loading_info["missing_keys"]
1125
+ # NOTE: the beacon parameters may or may not be loaded from the checkpoint
1126
+ # if it is loaded from the checkpoint, we should not re-initilize it
1127
+ model.model._init_beacon_embed(missing_keys)
1128
+ # initialize weights of possible q,k,v,o,mlp
1129
+ for layer in model.model.layers:
1130
+ layer.self_attn._init_beacon_proj(missing_keys)
1131
+
1132
+ return model
1133
+
1134
+ def _native_forward(
1135
+ self,
1136
+ input_ids: torch.LongTensor = None,
1137
+ attention_mask: Optional[torch.Tensor] = None,
1138
+ position_ids: Optional[torch.LongTensor] = None,
1139
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1140
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1141
+ labels: Optional[torch.LongTensor] = None,
1142
+ use_cache: Optional[bool] = None,
1143
+ output_attentions: Optional[bool] = None,
1144
+ output_hidden_states: Optional[bool] = None,
1145
+ return_dict: Optional[bool] = None,
1146
+ ) -> Union[Tuple, ModelOutput]:
1147
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1148
+ output_hidden_states = (
1149
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1150
+ )
1151
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1152
+
1153
+ # when we directly call _native_forward, the past_key_values would be None
1154
+ if past_key_values is None:
1155
+ # NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward
1156
+ past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)]
1157
+
1158
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1159
+ outputs = self.model(
1160
+ input_ids=input_ids,
1161
+ attention_mask=attention_mask,
1162
+ position_ids=position_ids,
1163
+ past_key_values=past_key_values,
1164
+ inputs_embeds=inputs_embeds,
1165
+ use_cache=use_cache,
1166
+ output_attentions=output_attentions,
1167
+ output_hidden_states=output_hidden_states,
1168
+ return_dict=return_dict,
1169
+ )
1170
+
1171
+ hidden_states = outputs[0]
1172
+ logits = self.lm_head(hidden_states)
1173
+ logits = logits.float()
1174
+
1175
+ loss = None
1176
+ batch_loss = None
1177
+ token_loss = None
1178
+
1179
+ if labels is not None:
1180
+ loss, batch_loss, token_loss = compute_loss(logits, labels, shift=False)
1181
+
1182
+ if not return_dict:
1183
+ output = (logits,) + outputs[1:]
1184
+ return (loss,) + output if loss is not None else output
1185
+
1186
+ return ModelOutput(
1187
+ loss=loss,
1188
+ batch_loss=batch_loss,
1189
+ token_loss=token_loss,
1190
+ logits=logits,
1191
+ past_key_values=outputs.past_key_values,
1192
+ hidden_states=outputs.hidden_states,
1193
+ attentions=outputs.attentions,
1194
+ )
1195
+
1196
+ def _beacon_forward(self,
1197
+ input_ids: torch.LongTensor = None,
1198
+ attention_mask: Optional[torch.Tensor] = None,
1199
+ position_ids: Optional[torch.LongTensor] = None,
1200
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1201
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1202
+ labels: Optional[torch.LongTensor] = None,
1203
+ use_cache: Optional[bool] = None,
1204
+ output_attentions: Optional[bool] = None,
1205
+ output_hidden_states: Optional[bool] = None,
1206
+ return_dict: Optional[bool] = None,
1207
+ beacon_skip_first=None,
1208
+ beacon_skip_last=None
1209
+ ):
1210
+ # t1 = time.time()
1211
+
1212
+ # initialize cache
1213
+ self.memory.prepare(
1214
+ input_ids=input_ids,
1215
+ attention_mask=attention_mask,
1216
+ labels=labels
1217
+ )
1218
+
1219
+ # t2 = time.time()
1220
+
1221
+ while not self.memory.finish:
1222
+
1223
+ # t3 = time.time()
1224
+
1225
+ input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step()
1226
+
1227
+ # t4 = time.time()
1228
+
1229
+ outputs = self._native_forward(
1230
+ input_ids=input_ids,
1231
+ attention_mask=attention_mask,
1232
+ position_ids=position_ids,
1233
+ past_key_values=past_key_values,
1234
+ inputs_embeds=inputs_embeds,
1235
+ use_cache=use_cache,
1236
+ output_attentions=output_attentions,
1237
+ output_hidden_states=output_hidden_states,
1238
+ return_dict=return_dict,
1239
+ labels=labels,
1240
+ )
1241
+
1242
+ # t5 = time.time()
1243
+
1244
+ # update past_key_values
1245
+ self.memory.update_memory(outputs.past_key_values)
1246
+
1247
+ # t6 = time.time()
1248
+
1249
+ if labels is not None:
1250
+ # update loss
1251
+ self.memory.update_loss(outputs.batch_loss, (labels != -100).sum(-1))
1252
+
1253
+ # t7 = time.time()
1254
+
1255
+ # print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}")
1256
+ # input()
1257
+
1258
+ # t8 = time.time()
1259
+
1260
+ # output loss, past_key_values, and perplexity
1261
+ outputs = self.memory.output(outputs)
1262
+
1263
+ # t9 = time.time()
1264
+
1265
+ # print(f"output time: {t9-t8}")
1266
+ # input()
1267
+
1268
+ return outputs
1269
+
1270
+ def forward(self, **kwargs):
1271
+ """Forward computation over a batch of sequences.
1272
+ """
1273
+ # only allow gradient when training
1274
+ with optional_grad_ctx(with_grad=self.training):
1275
+ # we can disable beacon to use the original mistral
1276
+ if hasattr(self, "_enable_beacon") and self._enable_beacon == False:
1277
+ return self._native_forward(**kwargs)
1278
+ else:
1279
+ return self._beacon_forward(**kwargs)
1280
+
1281
+ def prepare_inputs_for_generation(
1282
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs
1283
+ ):
1284
+ if past_key_values:
1285
+ input_ids = input_ids[:, -1:]
1286
+
1287
+ model_inputs = {"input_ids": input_ids, "beacon_skip_first": beacon_skip_first, "beacon_skip_last": beacon_skip_last}
1288
+ return model_inputs
1289
+
1290
+ @staticmethod
1291
+ def _reorder_cache(past_key_values, beam_idx):
1292
+ reordered_past = ()
1293
+ for layer_past in past_key_values:
1294
+ reordered_past += (
1295
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1296
+ )
1297
+ return reordered_past
modeling_utils.py ADDED
@@ -0,0 +1,711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from tqdm import tqdm
4
+ from dataclasses import dataclass
5
+ from contextlib import nullcontext
6
+ from typing import Mapping, Optional, Tuple
7
+ from accelerate import Accelerator
8
+ from collections import defaultdict
9
+ from transformers.modeling_outputs import BaseModelOutputWithPast
10
+
11
+
12
+ def optional_grad_ctx(with_grad=False):
13
+ if with_grad:
14
+ return nullcontext()
15
+ else:
16
+ return torch.no_grad()
17
+
18
+ def move_to_device(data, device):
19
+ """
20
+ Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
21
+ """
22
+ if isinstance(data, Mapping):
23
+ return type(data)({k: move_to_device(v, device) for k, v in data.items()})
24
+ elif isinstance(data, (tuple, list)):
25
+ return type(data)(move_to_device(v, device) for v in data)
26
+ elif isinstance(data, torch.Tensor):
27
+ kwargs = {"device": device}
28
+ return data.to(**kwargs)
29
+ else:
30
+ return data
31
+
32
+ def get_shifted_labels(input_ids):
33
+ if isinstance(input_ids, torch.Tensor):
34
+ labels = input_ids.clone()
35
+ labels = torch.cat([labels[:, 1:], labels.new_zeros((input_ids.shape[0], 1)) - 100], dim=-1)
36
+ elif isinstance(input_ids, list) and isinstance(input_ids[0], int):
37
+ labels = input_ids.copy()
38
+ labels = labels[1:] + [-100]
39
+ elif isinstance(input_ids, list) and isinstance(input_ids[0], list):
40
+ labels = input_ids.copy()
41
+ for i, label in enumerate(labels):
42
+ labels[i] = labels[i][1:] + [-100]
43
+ else:
44
+ raise NotImplementedError
45
+ return labels
46
+
47
+ def compute_loss(logits, labels, shift=False):
48
+ """
49
+ Returns:
50
+ token_loss: batch_size, seq_length
51
+ """
52
+ if shift:
53
+ labels = get_shifted_labels(labels)
54
+
55
+ labels = labels.to(logits.device)
56
+ batch_size = logits.shape[0]
57
+
58
+ # NOTE: the loss on -100 labels is 0 by default
59
+ token_loss = torch.nn.functional.cross_entropy(
60
+ logits.flatten(0, 1),
61
+ labels.reshape(-1),
62
+ reduction="none"
63
+ ).reshape(batch_size, -1) # batch_size, seq_len
64
+
65
+ # print(token_loss)
66
+
67
+ valid_token_num = (labels != -100).sum(-1) # batch_size
68
+ all_valid_token_num = valid_token_num.sum()
69
+
70
+ if all_valid_token_num > 0:
71
+ loss = token_loss.sum() / valid_token_num.sum()
72
+ else:
73
+ loss = token_loss.sum()
74
+
75
+ batch_loss = token_loss.sum(-1) / valid_token_num
76
+ # prevent nan
77
+ if (valid_token_num == 0).any():
78
+ batch_loss = batch_loss.masked_fill(valid_token_num == 0, 0.)
79
+
80
+ return loss, batch_loss, token_loss
81
+
82
+
83
+ @torch.no_grad()
84
+ def evaluate_perplexity(model, dataloader, accelerator:Optional[Accelerator]=None):
85
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
86
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
87
+ dataloader = accelerator.prepare(dataloader)
88
+
89
+ # if accelerator.process_index == 0:
90
+ # for name, x in model.named_parameters():
91
+ # print(f"{name: ^80} {x.dtype}")
92
+
93
+ all_loss = defaultdict(list)
94
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
95
+ # NOTE: important to reset memory for every batch
96
+ if hasattr(model, "memory"):
97
+ model.memory.reset()
98
+
99
+ # the seq id
100
+ index = x.pop("index")
101
+ # length is used to group training data, no use here
102
+ length = x.pop("length", None)
103
+
104
+ output = model(**x)
105
+
106
+ valid_token_num = (x["labels"] != -100).sum(-1)
107
+
108
+ # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
109
+ if hasattr(output, "batch_loss"):
110
+ # output from our model has batch_loss by default
111
+ batch_loss = output.batch_loss
112
+ else:
113
+ # output from other models does not
114
+ loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
115
+
116
+ index = index.tolist()
117
+ batch_loss = batch_loss.tolist()
118
+ valid_token_num = valid_token_num.tolist()
119
+
120
+ if accelerator is not None and accelerator.num_processes > 1:
121
+ # num_device * batch_size
122
+ index = accelerator.gather_for_metrics(index)
123
+ batch_loss = accelerator.gather_for_metrics(batch_loss)
124
+ valid_token_num = accelerator.gather_for_metrics(valid_token_num)
125
+
126
+ for _id, _loss, _num in zip(index, batch_loss, valid_token_num):
127
+ # loss times num is the total loss of all valid tokens
128
+ all_loss[_id].append((_loss * _num, _num))
129
+
130
+ all_loss = dict(all_loss)
131
+ for _id, loss_and_num in all_loss.items():
132
+ # sum up the loss for all valid tokens in the entire sequence, and divide the number of valid tokens
133
+ all_loss[_id] = sum([x[0] for x in loss_and_num]) / sum(x[1] for x in loss_and_num)
134
+
135
+ # average across then take exp
136
+ perplexity = math.exp(sum(all_loss.values()) / len(all_loss))
137
+ return perplexity
138
+
139
+
140
+ @torch.no_grad()
141
+ def evaluate_generation(model, dataloader, accelerator:Optional[Accelerator]=None, tokenizer=None, return_new_tokens_only=True, **generation_config):
142
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
143
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
144
+ dataloader = accelerator.prepare(dataloader)
145
+
146
+ all_indices = []
147
+ all_outputs = []
148
+
149
+ index = 0
150
+
151
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Generation")):
152
+ # if i > 3:
153
+ # break
154
+
155
+ # NOTE: important to reset memory for every batch
156
+ if hasattr(model, "memory"):
157
+ model.memory.reset()
158
+
159
+ # length is used to group training data, no use here
160
+ length = x.pop("length", None)
161
+
162
+ # if indices are None, we use batch size
163
+ indices = x.pop("index", None)
164
+ if indices is None:
165
+ indices = list(range(index, index + x['input_ids'].shape[0]))
166
+ index += x['input_ids'].shape[0]
167
+ else:
168
+ indices = indices.tolist()
169
+
170
+ outputs = model.generate(**x, **generation_config)
171
+ if return_new_tokens_only:
172
+ start_idx = x["input_ids"].shape[1]
173
+ outputs = outputs[:, start_idx:]
174
+
175
+ outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
176
+
177
+ if accelerator is not None and accelerator.num_processes > 1:
178
+ outputs = accelerator.gather_for_metrics(outputs)
179
+ indices = accelerator.gather_for_metrics(indices)
180
+
181
+ outputs = outputs
182
+ indices = indices
183
+ all_indices.extend(indices)
184
+ all_outputs.extend(outputs)
185
+
186
+ return all_indices, all_outputs
187
+
188
+
189
+ @torch.no_grad()
190
+ def evaluate_nll(model, dataloader, accelerator:Optional[Accelerator]=None):
191
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
192
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
193
+ dataloader = accelerator.prepare(dataloader)
194
+
195
+ # if accelerator.process_index == 0:
196
+ # for name, x in model.named_parameters():
197
+ # print(f"{name: ^80} {x.dtype}")
198
+
199
+ all_loss = defaultdict(list)
200
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
201
+ # NOTE: important to reset memory for every batch
202
+ if hasattr(model, "memory"):
203
+ model.memory.reset()
204
+
205
+ # the seq id
206
+ index = x.pop("index")
207
+ # length is used to group training data, no use here
208
+ length = x.pop("length", None)
209
+
210
+ output = model(**x)
211
+
212
+ valid_token_num = (x["labels"] != -100).sum()
213
+
214
+ # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
215
+ if hasattr(output, "batch_loss"):
216
+ # output from our model has batch_loss by default
217
+ batch_loss = output.batch_loss
218
+ else:
219
+ # output from other models does not
220
+ loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
221
+
222
+ if accelerator is not None and accelerator.num_processes > 1:
223
+ # num_device * batch_size
224
+ index = accelerator.gather_for_metrics(index)
225
+ batch_loss = accelerator.gather_for_metrics(batch_loss)
226
+ valid_token_num = accelerator.gather_for_metrics(valid_token_num)
227
+
228
+ for _id, _loss in zip(index.tolist(), batch_loss.tolist()):
229
+ # loss times num is the total loss of all valid tokens
230
+ all_loss[_id].append(_loss)
231
+
232
+ return all_loss
233
+
234
+
235
+ @dataclass
236
+ class ModelOutput(BaseModelOutputWithPast):
237
+ loss: Optional[torch.FloatTensor] = None
238
+ batch_loss: Optional[torch.FloatTensor] = None
239
+ token_loss: Optional[torch.FloatTensor] = None
240
+ logits: torch.FloatTensor = None
241
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
242
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
243
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
244
+
245
+
246
+
247
+ ########## Various RoPE Scaling Methods Below (wrap the encoding process within the module for convenience) ##########
248
+
249
+ def get_rope(head_dim, base, max_position_embeddings, rope_scaling=None):
250
+ """
251
+ Get rope module. {native, linear scaling, dynamic ntk scaling, yarn scaling, llama3 scaling}
252
+ """
253
+ if rope_scaling is None:
254
+ rope = RotaryEmbedding(
255
+ dim=head_dim,
256
+ base=base,
257
+ max_position_embeddings=max_position_embeddings,
258
+ )
259
+ else:
260
+ scaling_type = rope_scaling["type"]
261
+ scaling_factor = rope_scaling["factor"]
262
+ if scaling_type == "linear":
263
+ rope = LinearScalingRotaryEmbedding(
264
+ dim=head_dim,
265
+ base=base,
266
+ max_position_embeddings=max_position_embeddings,
267
+ scaling_factor=scaling_factor,
268
+ )
269
+ elif scaling_type == "dynamic":
270
+ rope = DynamicNTKScalingRotaryEmbedding(
271
+ dim=head_dim,
272
+ base=base,
273
+ max_position_embeddings=max_position_embeddings,
274
+ scaling_factor=scaling_factor,
275
+ )
276
+ elif scaling_type == "yarn":
277
+ rope = YarnRotaryEmbedding(
278
+ dim=head_dim,
279
+ base=base,
280
+ max_position_embeddings=max_position_embeddings,
281
+ scaling_factor=scaling_factor,
282
+ )
283
+ elif scaling_type == "yarn-t":
284
+ rope = YarnDynamicTemperatureRotaryEmbedding(
285
+ dim=head_dim,
286
+ base=base,
287
+ max_position_embeddings=max_position_embeddings,
288
+ scaling_factor=scaling_factor,
289
+ )
290
+ elif scaling_type == "yarn-t-logn":
291
+ rope = YarnDynamicTemperatureLogNRotaryEmbedding(
292
+ dim=head_dim,
293
+ base=base,
294
+ max_position_embeddings=max_position_embeddings,
295
+ scaling_factor=scaling_factor,
296
+ )
297
+ elif scaling_type == "llama3":
298
+ rope = Llama3RotaryEmbedding(
299
+ dim=head_dim,
300
+ base=base,
301
+ max_position_embeddings=max_position_embeddings,
302
+ scaling_factor=scaling_factor,
303
+ original_max_position_embeddings=rope_scaling.get("original_max_position_embeddings", 8192),
304
+ low_freq_factor=rope_scaling.get("low_freq_factor", 1),
305
+ high_freq_factor=rope_scaling.get("high_freq_factor", 4),
306
+ )
307
+ else:
308
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
309
+
310
+ return rope
311
+
312
+
313
+ def rotate_half(x):
314
+ """Rotates half the hidden dims of the input."""
315
+ x1 = x[..., : x.shape[-1] // 2]
316
+ x2 = x[..., x.shape[-1] // 2 :]
317
+ return torch.cat((-x2, x1), dim=-1)
318
+
319
+
320
+ class RotaryEmbedding(torch.nn.Module):
321
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
322
+ super().__init__()
323
+
324
+ self.dim = dim
325
+ self.max_position_embeddings = max_position_embeddings
326
+ self.base = base
327
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
328
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
329
+
330
+ # Build here to make `torch.jit.trace` work.
331
+ self._set_cos_sin_cache(
332
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
333
+ )
334
+
335
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
336
+ self.max_seq_len_cached = seq_len
337
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
338
+ freqs = torch.outer(t, self.inv_freq)
339
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
340
+ emb = torch.cat((freqs, freqs), dim=-1)
341
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
342
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
343
+
344
+ def forward(self, q, k, position_ids):
345
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
346
+
347
+ # x: [bs, num_attention_heads, seq_len, head_size]
348
+ if seq_len > self.max_seq_len_cached:
349
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
350
+
351
+ # batch_size, 1, key_len, head_dim
352
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
353
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
354
+
355
+ q_cos = k_cos[..., -q.shape[2]:, :]
356
+ q_sin = k_sin[..., -q.shape[2]:, :]
357
+
358
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
359
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
360
+ return q_embed, k_embed
361
+
362
+
363
+ class LinearScalingRotaryEmbedding(RotaryEmbedding):
364
+ """RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
365
+
366
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
367
+ self.scaling_factor = scaling_factor
368
+ super().__init__(dim, max_position_embeddings, base, device)
369
+
370
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
371
+ self.max_seq_len_cached = seq_len
372
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
373
+ t = t / self.scaling_factor
374
+
375
+ freqs = torch.outer(t, self.inv_freq)
376
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
377
+ emb = torch.cat((freqs, freqs), dim=-1)
378
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
379
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
380
+
381
+
382
+ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
383
+ """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
384
+
385
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
386
+ self.scaling_factor = scaling_factor
387
+ super().__init__(dim, max_position_embeddings, base, device)
388
+
389
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
390
+ self.max_seq_len_cached = seq_len
391
+
392
+ if seq_len > self.max_position_embeddings:
393
+ base = self.base * (
394
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
395
+ ) ** (self.dim / (self.dim - 2))
396
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
397
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
398
+
399
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
400
+
401
+ freqs = torch.outer(t, self.inv_freq)
402
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
403
+ emb = torch.cat((freqs, freqs), dim=-1)
404
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
405
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
406
+
407
+
408
+ class YarnRotaryEmbedding(torch.nn.Module):
409
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
410
+ super().__init__()
411
+
412
+ self.base = base
413
+ self.dim = dim
414
+ self.scaling_factor = scaling_factor
415
+ self.beta_slow = beta_slow
416
+ self.beta_fast = beta_fast
417
+ self.max_position_embeddings = max_position_embeddings
418
+
419
+ self._set_cos_sin_cache(
420
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
421
+ )
422
+
423
+ def _get_factor(self):
424
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
425
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
426
+ fast_dim = max(math.floor(fast_dim), 0)
427
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
428
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
429
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
430
+
431
+ if fast_dim == slow_dim:
432
+ slow_dim += 0.001
433
+
434
+ # NOTE: very important to use full precision here so that the factor is correct
435
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
436
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
437
+ dim_factor = torch.clamp(dim_factor, 0, 1)
438
+
439
+ # align with the paper notation
440
+ return (1 - dim_factor)
441
+
442
+ def _get_temperature(self):
443
+ if self.scaling_factor <= 1:
444
+ return 1.0
445
+ return 0.07 * math.log(self.scaling_factor) + 1.0
446
+
447
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
448
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
449
+ # dim / 2
450
+ freq = self.base ** dim_arange
451
+ theta = 1 / freq
452
+ interleave_theta = theta / self.scaling_factor
453
+
454
+ factor = self._get_factor().to(device)
455
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
456
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
457
+
458
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
459
+ freqs = torch.outer(t, self.inv_freq)
460
+ emb = torch.cat((freqs, freqs), dim=-1)
461
+
462
+ # get attention temperature
463
+ temperature = self._get_temperature()
464
+
465
+ self.register_buffer("cos_cached", emb.cos() * temperature, persistent=False)
466
+ self.register_buffer("sin_cached", emb.sin() * temperature, persistent=False)
467
+ self.max_seq_len_cached = seq_len
468
+
469
+ def forward(self, q, k, position_ids):
470
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
471
+
472
+ # x: [bs, num_attention_heads, seq_len, head_size]
473
+ if seq_len > self.max_seq_len_cached:
474
+ self.scaling_factor = seq_len / self.max_position_embeddings
475
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
476
+
477
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
478
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
479
+
480
+ q_cos = k_cos[..., -q.shape[2]:, :]
481
+ q_sin = k_sin[..., -q.shape[2]:, :]
482
+
483
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
484
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
485
+ return q_embed, k_embed
486
+
487
+
488
+ class YarnDynamicTemperatureRotaryEmbedding(torch.nn.Module):
489
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
490
+ super().__init__()
491
+
492
+ self.base = base
493
+ self.dim = dim
494
+ self.scaling_factor = scaling_factor
495
+ self.beta_slow = beta_slow
496
+ self.beta_fast = beta_fast
497
+ self.max_position_embeddings = max_position_embeddings
498
+
499
+ self._set_cos_sin_cache(
500
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
501
+ )
502
+
503
+ def _get_factor(self):
504
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
505
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
506
+ fast_dim = max(math.floor(fast_dim), 0)
507
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
508
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
509
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
510
+
511
+ if fast_dim == slow_dim:
512
+ slow_dim += 0.001
513
+
514
+ # NOTE: very important to use full precision here so that the factor is correct
515
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
516
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
517
+ dim_factor = torch.clamp(dim_factor, 0, 1)
518
+
519
+ # align with the paper notation
520
+ return (1 - dim_factor)
521
+
522
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
523
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
524
+ # dim / 2
525
+ freq = self.base ** dim_arange
526
+ theta = 1 / freq
527
+ interleave_theta = theta / self.scaling_factor
528
+
529
+ factor = self._get_factor().to(device)
530
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
531
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
532
+
533
+ positions = torch.arange(seq_len, device=device, dtype=torch.float32)
534
+ freqs = torch.outer(positions, self.inv_freq)
535
+ emb = torch.cat((freqs, freqs), dim=-1)
536
+
537
+ # NOTE: get attention temperature that will be applied on the query vector
538
+ # temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
539
+ temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
540
+ temperature[:self.max_position_embeddings] = 1
541
+ self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
542
+
543
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
544
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
545
+ self.max_seq_len_cached = seq_len
546
+
547
+ def forward(self, q, k, position_ids):
548
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
549
+
550
+ # x: [bs, num_attention_heads, seq_len, head_size]
551
+ if seq_len > self.max_seq_len_cached:
552
+ self.scaling_factor = seq_len / self.max_position_embeddings
553
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
554
+
555
+ # batch_size, 1, key_len, head_dim
556
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
557
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
558
+
559
+ q_cos = k_cos[..., -q.shape[2]:, :]
560
+ q_sin = k_sin[..., -q.shape[2]:, :]
561
+
562
+ q_position_ids = position_ids[:, -q.shape[2]:]
563
+ temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
564
+ q_cos = q_cos * temperature
565
+ q_sin = q_sin * temperature
566
+
567
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
568
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
569
+ return q_embed, k_embed
570
+
571
+
572
+ class YarnDynamicTemperatureLogNRotaryEmbedding(torch.nn.Module):
573
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
574
+ super().__init__()
575
+
576
+ self.base = base
577
+ self.dim = dim
578
+ self.scaling_factor = scaling_factor
579
+ self.beta_slow = beta_slow
580
+ self.beta_fast = beta_fast
581
+ self.max_position_embeddings = max_position_embeddings
582
+
583
+ self._set_cos_sin_cache(
584
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
585
+ )
586
+
587
+ def _get_factor(self):
588
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
589
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
590
+ fast_dim = max(math.floor(fast_dim), 0)
591
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
592
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
593
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
594
+
595
+ if fast_dim == slow_dim:
596
+ slow_dim += 0.001
597
+
598
+ # NOTE: very important to use full precision here so that the factor is correct
599
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
600
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
601
+ dim_factor = torch.clamp(dim_factor, 0, 1)
602
+
603
+ # align with the paper notation
604
+ return (1 - dim_factor)
605
+
606
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
607
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
608
+ # dim / 2
609
+ freq = self.base ** dim_arange
610
+ theta = 1 / freq
611
+ interleave_theta = theta / self.scaling_factor
612
+
613
+ factor = self._get_factor().to(device)
614
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
615
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
616
+
617
+ positions = torch.arange(seq_len, device=device, dtype=torch.float32)
618
+ freqs = torch.outer(positions, self.inv_freq)
619
+ emb = torch.cat((freqs, freqs), dim=-1)
620
+
621
+ # NOTE: get attention temperature that will be applied on the query vector
622
+ temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
623
+ # temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
624
+ temperature[:self.max_position_embeddings] = 1
625
+ self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
626
+
627
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
628
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
629
+ self.max_seq_len_cached = seq_len
630
+
631
+ def forward(self, q, k, position_ids):
632
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
633
+
634
+ # x: [bs, num_attention_heads, seq_len, head_size]
635
+ if seq_len > self.max_seq_len_cached:
636
+ self.scaling_factor = seq_len / self.max_position_embeddings
637
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
638
+
639
+ # batch_size, 1, key_len, head_dim
640
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
641
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
642
+
643
+ q_cos = k_cos[..., -q.shape[2]:, :]
644
+ q_sin = k_sin[..., -q.shape[2]:, :]
645
+
646
+ q_position_ids = position_ids[:, -q.shape[2]:]
647
+ temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
648
+ q_cos = q_cos * temperature
649
+ q_sin = q_sin * temperature
650
+
651
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
652
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
653
+ return q_embed, k_embed
654
+
655
+
656
+ class Llama3RotaryEmbedding(torch.nn.Module):
657
+ def __init__(self, dim, max_position_embeddings=8192, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=8192, low_freq_factor=1, high_freq_factor=4):
658
+ super().__init__()
659
+
660
+ self.base = base
661
+ self.dim = dim
662
+ self.scaling_factor = scaling_factor
663
+ self.original_max_position_embeddings = original_max_position_embeddings
664
+ self.max_position_embeddings = max(max_position_embeddings, int(original_max_position_embeddings * scaling_factor))
665
+ self.low_freq_factor = low_freq_factor
666
+ self.high_freq_factor = high_freq_factor
667
+
668
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
669
+ low_freq_wavelen = self.original_max_position_embeddings / low_freq_factor
670
+ high_freq_wavelen = self.original_max_position_embeddings / high_freq_factor
671
+ new_freqs = []
672
+ for freq in inv_freq:
673
+ wavelen = 2 * math.pi / freq
674
+ if wavelen < high_freq_wavelen:
675
+ new_freqs.append(freq)
676
+ elif wavelen > low_freq_wavelen:
677
+ new_freqs.append(freq / scaling_factor)
678
+ else:
679
+ assert low_freq_wavelen != high_freq_wavelen
680
+ smooth = (self.original_max_position_embeddings / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
681
+ new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
682
+ inv_freq = torch.tensor(new_freqs, dtype=inv_freq.dtype, device=inv_freq.device)
683
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
684
+
685
+ self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=device)
686
+
687
+ def _set_cos_sin_cache(self, seq_len, device):
688
+ self.max_seq_len_cached = seq_len
689
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
690
+ freqs = torch.outer(t, self.inv_freq)
691
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
692
+ emb = torch.cat((freqs, freqs), dim=-1)
693
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
694
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
695
+
696
+ def forward(self, q, k, position_ids):
697
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
698
+
699
+ # x: [bs, num_attention_heads, seq_len, head_size]
700
+ if seq_len > self.max_seq_len_cached:
701
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device)
702
+
703
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
704
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
705
+
706
+ q_cos = k_cos[..., -q.shape[2]:, :]
707
+ q_sin = k_sin[..., -q.shape[2]:, :]
708
+
709
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
710
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
711
+ return q_embed, k_embed
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "left",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,2156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 15260,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.9230163097381592,
14
+ "learning_rate": 4.984598243544371e-05,
15
+ "loss": 2.0529,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 1.205999732017517,
21
+ "learning_rate": 4.968213396251148e-05,
22
+ "loss": 1.8376,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.5816870331764221,
28
+ "learning_rate": 4.951828548957924e-05,
29
+ "loss": 1.7882,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 0.45057499408721924,
35
+ "learning_rate": 4.935443701664701e-05,
36
+ "loss": 1.8113,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 0.5159332752227783,
42
+ "learning_rate": 4.9190588543714776e-05,
43
+ "loss": 1.8183,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "grad_norm": 0.42658549547195435,
49
+ "learning_rate": 4.9026740070782544e-05,
50
+ "loss": 1.8049,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "grad_norm": 0.6193262338638306,
56
+ "learning_rate": 4.8862891597850306e-05,
57
+ "loss": 1.8195,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.03,
62
+ "grad_norm": 0.40126094222068787,
63
+ "learning_rate": 4.8699043124918075e-05,
64
+ "loss": 1.8445,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.03,
69
+ "grad_norm": 0.4089142978191376,
70
+ "learning_rate": 4.853519465198584e-05,
71
+ "loss": 1.7967,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.03,
76
+ "grad_norm": 0.3923342525959015,
77
+ "learning_rate": 4.837134617905361e-05,
78
+ "loss": 1.7941,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.04,
83
+ "grad_norm": 0.415017694234848,
84
+ "learning_rate": 4.820749770612138e-05,
85
+ "loss": 1.7999,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.04,
90
+ "grad_norm": 0.5846891403198242,
91
+ "learning_rate": 4.804364923318915e-05,
92
+ "loss": 1.8064,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "grad_norm": 0.3614323139190674,
98
+ "learning_rate": 4.787980076025692e-05,
99
+ "loss": 1.7865,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.05,
104
+ "grad_norm": 0.37756502628326416,
105
+ "learning_rate": 4.7715952287324686e-05,
106
+ "loss": 1.7745,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.05,
111
+ "grad_norm": 0.3763517141342163,
112
+ "learning_rate": 4.7552103814392455e-05,
113
+ "loss": 1.8188,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.05,
118
+ "grad_norm": 0.41242149472236633,
119
+ "learning_rate": 4.7388255341460216e-05,
120
+ "loss": 1.8238,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.06,
125
+ "grad_norm": 0.4072262644767761,
126
+ "learning_rate": 4.7224406868527985e-05,
127
+ "loss": 1.838,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.06,
132
+ "grad_norm": 0.5368711352348328,
133
+ "learning_rate": 4.7060558395595753e-05,
134
+ "loss": 1.8121,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.06,
139
+ "grad_norm": 0.3726208508014679,
140
+ "learning_rate": 4.689670992266352e-05,
141
+ "loss": 1.7872,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.07,
146
+ "grad_norm": 0.3755347728729248,
147
+ "learning_rate": 4.673286144973129e-05,
148
+ "loss": 1.8164,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.07,
153
+ "grad_norm": 0.6106815934181213,
154
+ "learning_rate": 4.656901297679906e-05,
155
+ "loss": 1.8034,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.07,
160
+ "grad_norm": 0.4525647461414337,
161
+ "learning_rate": 4.640516450386683e-05,
162
+ "loss": 1.8174,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.08,
167
+ "grad_norm": 0.4508289396762848,
168
+ "learning_rate": 4.6241316030934596e-05,
169
+ "loss": 1.7958,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.08,
174
+ "grad_norm": 0.5615507960319519,
175
+ "learning_rate": 4.6077467558002365e-05,
176
+ "loss": 1.807,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.5430244207382202,
182
+ "learning_rate": 4.5913619085070133e-05,
183
+ "loss": 1.7694,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.09,
188
+ "grad_norm": 0.4304679334163666,
189
+ "learning_rate": 4.57497706121379e-05,
190
+ "loss": 1.9162,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.09,
195
+ "grad_norm": 0.4160442650318146,
196
+ "learning_rate": 4.5585922139205664e-05,
197
+ "loss": 1.8106,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.09,
202
+ "grad_norm": 0.5771602988243103,
203
+ "learning_rate": 4.542207366627343e-05,
204
+ "loss": 1.7815,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.1,
209
+ "grad_norm": 0.6032801866531372,
210
+ "learning_rate": 4.52582251933412e-05,
211
+ "loss": 1.8171,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.1,
216
+ "grad_norm": 0.4265432059764862,
217
+ "learning_rate": 4.509437672040897e-05,
218
+ "loss": 1.7537,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.1,
223
+ "grad_norm": 0.6046428084373474,
224
+ "learning_rate": 4.493052824747673e-05,
225
+ "loss": 1.8251,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.1,
230
+ "grad_norm": 0.4501182436943054,
231
+ "learning_rate": 4.47666797745445e-05,
232
+ "loss": 1.8186,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.11,
237
+ "grad_norm": 0.5386430621147156,
238
+ "learning_rate": 4.460283130161227e-05,
239
+ "loss": 1.82,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.11,
244
+ "grad_norm": 0.549318790435791,
245
+ "learning_rate": 4.443898282868004e-05,
246
+ "loss": 1.9232,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 0.11,
251
+ "grad_norm": 0.432767778635025,
252
+ "learning_rate": 4.4275134355747806e-05,
253
+ "loss": 1.7913,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 0.12,
258
+ "grad_norm": 0.5354149341583252,
259
+ "learning_rate": 4.4111285882815574e-05,
260
+ "loss": 1.7933,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 0.12,
265
+ "grad_norm": 0.46177294850349426,
266
+ "learning_rate": 4.394743740988334e-05,
267
+ "loss": 1.7801,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 0.12,
272
+ "grad_norm": 4.336757183074951,
273
+ "learning_rate": 4.378358893695111e-05,
274
+ "loss": 1.774,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 0.13,
279
+ "grad_norm": 0.44567111134529114,
280
+ "learning_rate": 4.361974046401888e-05,
281
+ "loss": 1.7708,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 0.13,
286
+ "grad_norm": 0.4324832260608673,
287
+ "learning_rate": 4.345589199108664e-05,
288
+ "loss": 1.7743,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "grad_norm": 0.35905638337135315,
294
+ "learning_rate": 4.329204351815441e-05,
295
+ "loss": 1.8115,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 0.14,
300
+ "grad_norm": 0.6442646980285645,
301
+ "learning_rate": 4.312819504522218e-05,
302
+ "loss": 1.7691,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 0.14,
307
+ "grad_norm": 0.385105162858963,
308
+ "learning_rate": 4.296434657228995e-05,
309
+ "loss": 1.7991,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 0.14,
314
+ "grad_norm": 0.4879704713821411,
315
+ "learning_rate": 4.2800498099357716e-05,
316
+ "loss": 1.7906,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 0.15,
321
+ "grad_norm": 0.3042909801006317,
322
+ "learning_rate": 4.2636649626425485e-05,
323
+ "loss": 1.7957,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 0.15,
328
+ "grad_norm": 0.41942423582077026,
329
+ "learning_rate": 4.247280115349325e-05,
330
+ "loss": 1.791,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 0.15,
335
+ "grad_norm": 0.40257078409194946,
336
+ "learning_rate": 4.230895268056102e-05,
337
+ "loss": 1.7815,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 0.16,
342
+ "grad_norm": 0.4478552043437958,
343
+ "learning_rate": 4.214510420762879e-05,
344
+ "loss": 1.803,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 0.16,
349
+ "grad_norm": 284.23187255859375,
350
+ "learning_rate": 4.198125573469656e-05,
351
+ "loss": 1.8267,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 0.16,
356
+ "grad_norm": 0.3262351453304291,
357
+ "learning_rate": 4.181740726176433e-05,
358
+ "loss": 1.8991,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 0.17,
363
+ "grad_norm": 0.4118567109107971,
364
+ "learning_rate": 4.165355878883209e-05,
365
+ "loss": 1.8224,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 0.17,
370
+ "grad_norm": 1.5378553867340088,
371
+ "learning_rate": 4.148971031589986e-05,
372
+ "loss": 1.7887,
373
+ "step": 2600
374
+ },
375
+ {
376
+ "epoch": 0.17,
377
+ "grad_norm": 0.3631303012371063,
378
+ "learning_rate": 4.1325861842967626e-05,
379
+ "loss": 1.7825,
380
+ "step": 2650
381
+ },
382
+ {
383
+ "epoch": 0.18,
384
+ "grad_norm": 0.3822169303894043,
385
+ "learning_rate": 4.116201337003539e-05,
386
+ "loss": 1.7608,
387
+ "step": 2700
388
+ },
389
+ {
390
+ "epoch": 0.18,
391
+ "grad_norm": 0.41518792510032654,
392
+ "learning_rate": 4.099816489710316e-05,
393
+ "loss": 1.8161,
394
+ "step": 2750
395
+ },
396
+ {
397
+ "epoch": 0.18,
398
+ "grad_norm": 0.517413318157196,
399
+ "learning_rate": 4.0834316424170925e-05,
400
+ "loss": 1.8081,
401
+ "step": 2800
402
+ },
403
+ {
404
+ "epoch": 0.19,
405
+ "grad_norm": 0.3587147891521454,
406
+ "learning_rate": 4.0670467951238694e-05,
407
+ "loss": 1.8077,
408
+ "step": 2850
409
+ },
410
+ {
411
+ "epoch": 0.19,
412
+ "grad_norm": 0.39981338381767273,
413
+ "learning_rate": 4.050661947830646e-05,
414
+ "loss": 1.7991,
415
+ "step": 2900
416
+ },
417
+ {
418
+ "epoch": 0.19,
419
+ "grad_norm": 0.35814446210861206,
420
+ "learning_rate": 4.034277100537423e-05,
421
+ "loss": 1.7933,
422
+ "step": 2950
423
+ },
424
+ {
425
+ "epoch": 0.2,
426
+ "grad_norm": 0.317147433757782,
427
+ "learning_rate": 4.0178922532442e-05,
428
+ "loss": 1.8309,
429
+ "step": 3000
430
+ },
431
+ {
432
+ "epoch": 0.2,
433
+ "grad_norm": 0.4601675271987915,
434
+ "learning_rate": 4.001507405950977e-05,
435
+ "loss": 1.7635,
436
+ "step": 3050
437
+ },
438
+ {
439
+ "epoch": 0.2,
440
+ "grad_norm": 0.3678904175758362,
441
+ "learning_rate": 3.985122558657754e-05,
442
+ "loss": 1.7948,
443
+ "step": 3100
444
+ },
445
+ {
446
+ "epoch": 0.21,
447
+ "grad_norm": 0.37515679001808167,
448
+ "learning_rate": 3.9687377113645305e-05,
449
+ "loss": 1.823,
450
+ "step": 3150
451
+ },
452
+ {
453
+ "epoch": 0.21,
454
+ "grad_norm": 0.4639309346675873,
455
+ "learning_rate": 3.952352864071307e-05,
456
+ "loss": 1.7888,
457
+ "step": 3200
458
+ },
459
+ {
460
+ "epoch": 0.21,
461
+ "grad_norm": 0.45223185420036316,
462
+ "learning_rate": 3.9359680167780836e-05,
463
+ "loss": 1.7366,
464
+ "step": 3250
465
+ },
466
+ {
467
+ "epoch": 0.22,
468
+ "grad_norm": 0.40405765175819397,
469
+ "learning_rate": 3.9195831694848604e-05,
470
+ "loss": 1.7682,
471
+ "step": 3300
472
+ },
473
+ {
474
+ "epoch": 0.22,
475
+ "grad_norm": 0.45404157042503357,
476
+ "learning_rate": 3.903198322191637e-05,
477
+ "loss": 1.798,
478
+ "step": 3350
479
+ },
480
+ {
481
+ "epoch": 0.22,
482
+ "grad_norm": 0.5335371494293213,
483
+ "learning_rate": 3.886813474898414e-05,
484
+ "loss": 1.8179,
485
+ "step": 3400
486
+ },
487
+ {
488
+ "epoch": 0.23,
489
+ "grad_norm": 0.4759540557861328,
490
+ "learning_rate": 3.870428627605191e-05,
491
+ "loss": 1.7829,
492
+ "step": 3450
493
+ },
494
+ {
495
+ "epoch": 0.23,
496
+ "grad_norm": 0.5050774216651917,
497
+ "learning_rate": 3.854043780311968e-05,
498
+ "loss": 1.7953,
499
+ "step": 3500
500
+ },
501
+ {
502
+ "epoch": 0.23,
503
+ "grad_norm": 0.44674813747406006,
504
+ "learning_rate": 3.837658933018745e-05,
505
+ "loss": 1.7945,
506
+ "step": 3550
507
+ },
508
+ {
509
+ "epoch": 0.24,
510
+ "grad_norm": 0.34432777762413025,
511
+ "learning_rate": 3.8212740857255216e-05,
512
+ "loss": 1.7968,
513
+ "step": 3600
514
+ },
515
+ {
516
+ "epoch": 0.24,
517
+ "grad_norm": 0.4797002077102661,
518
+ "learning_rate": 3.8048892384322984e-05,
519
+ "loss": 1.7275,
520
+ "step": 3650
521
+ },
522
+ {
523
+ "epoch": 0.24,
524
+ "grad_norm": 0.40203359723091125,
525
+ "learning_rate": 3.788504391139075e-05,
526
+ "loss": 1.7905,
527
+ "step": 3700
528
+ },
529
+ {
530
+ "epoch": 0.25,
531
+ "grad_norm": 0.3257518708705902,
532
+ "learning_rate": 3.7721195438458515e-05,
533
+ "loss": 1.8077,
534
+ "step": 3750
535
+ },
536
+ {
537
+ "epoch": 0.25,
538
+ "grad_norm": 0.38829201459884644,
539
+ "learning_rate": 3.755734696552628e-05,
540
+ "loss": 1.7965,
541
+ "step": 3800
542
+ },
543
+ {
544
+ "epoch": 0.25,
545
+ "grad_norm": 0.3530164062976837,
546
+ "learning_rate": 3.739349849259405e-05,
547
+ "loss": 1.7925,
548
+ "step": 3850
549
+ },
550
+ {
551
+ "epoch": 0.26,
552
+ "grad_norm": 0.521428644657135,
553
+ "learning_rate": 3.7229650019661814e-05,
554
+ "loss": 1.7921,
555
+ "step": 3900
556
+ },
557
+ {
558
+ "epoch": 0.26,
559
+ "grad_norm": 0.3673698902130127,
560
+ "learning_rate": 3.706580154672958e-05,
561
+ "loss": 1.7981,
562
+ "step": 3950
563
+ },
564
+ {
565
+ "epoch": 0.26,
566
+ "grad_norm": 0.3477175235748291,
567
+ "learning_rate": 3.690195307379735e-05,
568
+ "loss": 1.7857,
569
+ "step": 4000
570
+ },
571
+ {
572
+ "epoch": 0.27,
573
+ "grad_norm": 0.3988274037837982,
574
+ "learning_rate": 3.673810460086512e-05,
575
+ "loss": 1.8014,
576
+ "step": 4050
577
+ },
578
+ {
579
+ "epoch": 0.27,
580
+ "grad_norm": 0.48254644870758057,
581
+ "learning_rate": 3.657425612793289e-05,
582
+ "loss": 1.8317,
583
+ "step": 4100
584
+ },
585
+ {
586
+ "epoch": 0.27,
587
+ "grad_norm": 0.9297109842300415,
588
+ "learning_rate": 3.6410407655000656e-05,
589
+ "loss": 1.7732,
590
+ "step": 4150
591
+ },
592
+ {
593
+ "epoch": 0.28,
594
+ "grad_norm": 0.33822837471961975,
595
+ "learning_rate": 3.6246559182068425e-05,
596
+ "loss": 1.8004,
597
+ "step": 4200
598
+ },
599
+ {
600
+ "epoch": 0.28,
601
+ "grad_norm": 0.3119085431098938,
602
+ "learning_rate": 3.6082710709136193e-05,
603
+ "loss": 1.7709,
604
+ "step": 4250
605
+ },
606
+ {
607
+ "epoch": 0.28,
608
+ "grad_norm": 0.3552871346473694,
609
+ "learning_rate": 3.591886223620396e-05,
610
+ "loss": 1.7865,
611
+ "step": 4300
612
+ },
613
+ {
614
+ "epoch": 0.29,
615
+ "grad_norm": 0.5379615426063538,
616
+ "learning_rate": 3.575501376327173e-05,
617
+ "loss": 1.8026,
618
+ "step": 4350
619
+ },
620
+ {
621
+ "epoch": 0.29,
622
+ "grad_norm": 0.3345562815666199,
623
+ "learning_rate": 3.559116529033949e-05,
624
+ "loss": 1.8146,
625
+ "step": 4400
626
+ },
627
+ {
628
+ "epoch": 0.29,
629
+ "grad_norm": 0.5010606646537781,
630
+ "learning_rate": 3.542731681740726e-05,
631
+ "loss": 1.8117,
632
+ "step": 4450
633
+ },
634
+ {
635
+ "epoch": 0.29,
636
+ "grad_norm": 0.46487560868263245,
637
+ "learning_rate": 3.526346834447503e-05,
638
+ "loss": 1.7583,
639
+ "step": 4500
640
+ },
641
+ {
642
+ "epoch": 0.3,
643
+ "grad_norm": 0.4831026792526245,
644
+ "learning_rate": 3.50996198715428e-05,
645
+ "loss": 1.768,
646
+ "step": 4550
647
+ },
648
+ {
649
+ "epoch": 0.3,
650
+ "grad_norm": 0.5314655303955078,
651
+ "learning_rate": 3.493577139861057e-05,
652
+ "loss": 1.8041,
653
+ "step": 4600
654
+ },
655
+ {
656
+ "epoch": 0.3,
657
+ "grad_norm": 0.4257725477218628,
658
+ "learning_rate": 3.4771922925678335e-05,
659
+ "loss": 1.7929,
660
+ "step": 4650
661
+ },
662
+ {
663
+ "epoch": 0.31,
664
+ "grad_norm": 0.4357529878616333,
665
+ "learning_rate": 3.4608074452746104e-05,
666
+ "loss": 1.7826,
667
+ "step": 4700
668
+ },
669
+ {
670
+ "epoch": 0.31,
671
+ "grad_norm": 0.4604736268520355,
672
+ "learning_rate": 3.444422597981387e-05,
673
+ "loss": 1.8099,
674
+ "step": 4750
675
+ },
676
+ {
677
+ "epoch": 0.31,
678
+ "grad_norm": 0.44079703092575073,
679
+ "learning_rate": 3.428037750688164e-05,
680
+ "loss": 1.7825,
681
+ "step": 4800
682
+ },
683
+ {
684
+ "epoch": 0.32,
685
+ "grad_norm": 0.4325021207332611,
686
+ "learning_rate": 3.411652903394941e-05,
687
+ "loss": 1.7546,
688
+ "step": 4850
689
+ },
690
+ {
691
+ "epoch": 0.32,
692
+ "grad_norm": 0.3814845681190491,
693
+ "learning_rate": 3.395268056101718e-05,
694
+ "loss": 1.8295,
695
+ "step": 4900
696
+ },
697
+ {
698
+ "epoch": 0.32,
699
+ "grad_norm": 0.3426695764064789,
700
+ "learning_rate": 3.378883208808494e-05,
701
+ "loss": 1.8149,
702
+ "step": 4950
703
+ },
704
+ {
705
+ "epoch": 0.33,
706
+ "grad_norm": 0.3510643541812897,
707
+ "learning_rate": 3.362498361515271e-05,
708
+ "loss": 1.8042,
709
+ "step": 5000
710
+ },
711
+ {
712
+ "epoch": 0.33,
713
+ "grad_norm": 0.4605468213558197,
714
+ "learning_rate": 3.346113514222048e-05,
715
+ "loss": 1.7828,
716
+ "step": 5050
717
+ },
718
+ {
719
+ "epoch": 0.33,
720
+ "grad_norm": 0.3923262059688568,
721
+ "learning_rate": 3.329728666928824e-05,
722
+ "loss": 1.8252,
723
+ "step": 5100
724
+ },
725
+ {
726
+ "epoch": 0.34,
727
+ "grad_norm": 0.35685479640960693,
728
+ "learning_rate": 3.313343819635601e-05,
729
+ "loss": 1.8354,
730
+ "step": 5150
731
+ },
732
+ {
733
+ "epoch": 0.34,
734
+ "grad_norm": 0.6825860738754272,
735
+ "learning_rate": 3.2969589723423776e-05,
736
+ "loss": 1.7901,
737
+ "step": 5200
738
+ },
739
+ {
740
+ "epoch": 0.34,
741
+ "grad_norm": 0.6853482723236084,
742
+ "learning_rate": 3.2805741250491545e-05,
743
+ "loss": 1.8072,
744
+ "step": 5250
745
+ },
746
+ {
747
+ "epoch": 0.35,
748
+ "grad_norm": 0.5828983783721924,
749
+ "learning_rate": 3.264189277755931e-05,
750
+ "loss": 1.7666,
751
+ "step": 5300
752
+ },
753
+ {
754
+ "epoch": 0.35,
755
+ "grad_norm": 0.4155603051185608,
756
+ "learning_rate": 3.247804430462708e-05,
757
+ "loss": 1.8165,
758
+ "step": 5350
759
+ },
760
+ {
761
+ "epoch": 0.35,
762
+ "grad_norm": 0.3048844635486603,
763
+ "learning_rate": 3.231419583169485e-05,
764
+ "loss": 1.7664,
765
+ "step": 5400
766
+ },
767
+ {
768
+ "epoch": 0.36,
769
+ "grad_norm": 0.786605715751648,
770
+ "learning_rate": 3.215034735876262e-05,
771
+ "loss": 1.8138,
772
+ "step": 5450
773
+ },
774
+ {
775
+ "epoch": 0.36,
776
+ "grad_norm": 0.9150344133377075,
777
+ "learning_rate": 3.198649888583039e-05,
778
+ "loss": 1.8106,
779
+ "step": 5500
780
+ },
781
+ {
782
+ "epoch": 0.36,
783
+ "grad_norm": 0.43113359808921814,
784
+ "learning_rate": 3.1822650412898156e-05,
785
+ "loss": 1.7895,
786
+ "step": 5550
787
+ },
788
+ {
789
+ "epoch": 0.37,
790
+ "grad_norm": 0.4392976760864258,
791
+ "learning_rate": 3.165880193996592e-05,
792
+ "loss": 1.7897,
793
+ "step": 5600
794
+ },
795
+ {
796
+ "epoch": 0.37,
797
+ "grad_norm": 0.5544856786727905,
798
+ "learning_rate": 3.1494953467033686e-05,
799
+ "loss": 1.783,
800
+ "step": 5650
801
+ },
802
+ {
803
+ "epoch": 0.37,
804
+ "grad_norm": 0.30507203936576843,
805
+ "learning_rate": 3.1331104994101455e-05,
806
+ "loss": 1.819,
807
+ "step": 5700
808
+ },
809
+ {
810
+ "epoch": 0.38,
811
+ "grad_norm": 0.39048048853874207,
812
+ "learning_rate": 3.1167256521169224e-05,
813
+ "loss": 1.8011,
814
+ "step": 5750
815
+ },
816
+ {
817
+ "epoch": 0.38,
818
+ "grad_norm": 0.3265933096408844,
819
+ "learning_rate": 3.100340804823699e-05,
820
+ "loss": 1.7867,
821
+ "step": 5800
822
+ },
823
+ {
824
+ "epoch": 0.38,
825
+ "grad_norm": 0.8230869174003601,
826
+ "learning_rate": 3.083955957530476e-05,
827
+ "loss": 1.8035,
828
+ "step": 5850
829
+ },
830
+ {
831
+ "epoch": 0.39,
832
+ "grad_norm": 0.5455942153930664,
833
+ "learning_rate": 3.067571110237253e-05,
834
+ "loss": 1.7662,
835
+ "step": 5900
836
+ },
837
+ {
838
+ "epoch": 0.39,
839
+ "grad_norm": 0.4801247715950012,
840
+ "learning_rate": 3.0511862629440298e-05,
841
+ "loss": 1.7932,
842
+ "step": 5950
843
+ },
844
+ {
845
+ "epoch": 0.39,
846
+ "grad_norm": 0.3930888772010803,
847
+ "learning_rate": 3.0348014156508063e-05,
848
+ "loss": 1.7954,
849
+ "step": 6000
850
+ },
851
+ {
852
+ "epoch": 0.4,
853
+ "grad_norm": 0.3690837323665619,
854
+ "learning_rate": 3.018416568357583e-05,
855
+ "loss": 1.8081,
856
+ "step": 6050
857
+ },
858
+ {
859
+ "epoch": 0.4,
860
+ "grad_norm": 0.45955517888069153,
861
+ "learning_rate": 3.00203172106436e-05,
862
+ "loss": 1.7859,
863
+ "step": 6100
864
+ },
865
+ {
866
+ "epoch": 0.4,
867
+ "grad_norm": 0.3670261800289154,
868
+ "learning_rate": 2.985646873771137e-05,
869
+ "loss": 1.7891,
870
+ "step": 6150
871
+ },
872
+ {
873
+ "epoch": 0.41,
874
+ "grad_norm": 0.5386211276054382,
875
+ "learning_rate": 2.9692620264779137e-05,
876
+ "loss": 1.8026,
877
+ "step": 6200
878
+ },
879
+ {
880
+ "epoch": 0.41,
881
+ "grad_norm": 0.5107685327529907,
882
+ "learning_rate": 2.95287717918469e-05,
883
+ "loss": 1.8281,
884
+ "step": 6250
885
+ },
886
+ {
887
+ "epoch": 0.41,
888
+ "grad_norm": 0.3285304009914398,
889
+ "learning_rate": 2.9364923318914668e-05,
890
+ "loss": 1.788,
891
+ "step": 6300
892
+ },
893
+ {
894
+ "epoch": 0.42,
895
+ "grad_norm": 0.699974775314331,
896
+ "learning_rate": 2.9201074845982436e-05,
897
+ "loss": 1.8138,
898
+ "step": 6350
899
+ },
900
+ {
901
+ "epoch": 0.42,
902
+ "grad_norm": 0.3917068839073181,
903
+ "learning_rate": 2.90372263730502e-05,
904
+ "loss": 1.7874,
905
+ "step": 6400
906
+ },
907
+ {
908
+ "epoch": 0.42,
909
+ "grad_norm": 0.4506165087223053,
910
+ "learning_rate": 2.887337790011797e-05,
911
+ "loss": 1.8026,
912
+ "step": 6450
913
+ },
914
+ {
915
+ "epoch": 0.43,
916
+ "grad_norm": 0.5004333257675171,
917
+ "learning_rate": 2.870952942718574e-05,
918
+ "loss": 1.7651,
919
+ "step": 6500
920
+ },
921
+ {
922
+ "epoch": 0.43,
923
+ "grad_norm": 0.4514022171497345,
924
+ "learning_rate": 2.8545680954253507e-05,
925
+ "loss": 1.7393,
926
+ "step": 6550
927
+ },
928
+ {
929
+ "epoch": 0.43,
930
+ "grad_norm": 0.4520861804485321,
931
+ "learning_rate": 2.8381832481321276e-05,
932
+ "loss": 1.7651,
933
+ "step": 6600
934
+ },
935
+ {
936
+ "epoch": 0.44,
937
+ "grad_norm": 0.5931407809257507,
938
+ "learning_rate": 2.821798400838904e-05,
939
+ "loss": 1.7623,
940
+ "step": 6650
941
+ },
942
+ {
943
+ "epoch": 0.44,
944
+ "grad_norm": 0.518058180809021,
945
+ "learning_rate": 2.805413553545681e-05,
946
+ "loss": 1.7582,
947
+ "step": 6700
948
+ },
949
+ {
950
+ "epoch": 0.44,
951
+ "grad_norm": 0.34412890672683716,
952
+ "learning_rate": 2.7890287062524578e-05,
953
+ "loss": 1.8062,
954
+ "step": 6750
955
+ },
956
+ {
957
+ "epoch": 0.45,
958
+ "grad_norm": 0.4060100018978119,
959
+ "learning_rate": 2.7726438589592347e-05,
960
+ "loss": 1.8026,
961
+ "step": 6800
962
+ },
963
+ {
964
+ "epoch": 0.45,
965
+ "grad_norm": 0.5105322003364563,
966
+ "learning_rate": 2.7562590116660115e-05,
967
+ "loss": 1.7946,
968
+ "step": 6850
969
+ },
970
+ {
971
+ "epoch": 0.45,
972
+ "grad_norm": 0.4951707422733307,
973
+ "learning_rate": 2.7398741643727884e-05,
974
+ "loss": 1.7421,
975
+ "step": 6900
976
+ },
977
+ {
978
+ "epoch": 0.46,
979
+ "grad_norm": 0.5833694338798523,
980
+ "learning_rate": 2.723489317079565e-05,
981
+ "loss": 1.774,
982
+ "step": 6950
983
+ },
984
+ {
985
+ "epoch": 0.46,
986
+ "grad_norm": 0.3745187520980835,
987
+ "learning_rate": 2.7071044697863417e-05,
988
+ "loss": 1.7682,
989
+ "step": 7000
990
+ },
991
+ {
992
+ "epoch": 0.46,
993
+ "grad_norm": 0.4256528615951538,
994
+ "learning_rate": 2.6907196224931186e-05,
995
+ "loss": 1.7371,
996
+ "step": 7050
997
+ },
998
+ {
999
+ "epoch": 0.47,
1000
+ "grad_norm": 0.3425038754940033,
1001
+ "learning_rate": 2.6743347751998955e-05,
1002
+ "loss": 1.7922,
1003
+ "step": 7100
1004
+ },
1005
+ {
1006
+ "epoch": 0.47,
1007
+ "grad_norm": 0.5452577471733093,
1008
+ "learning_rate": 2.6579499279066723e-05,
1009
+ "loss": 1.8093,
1010
+ "step": 7150
1011
+ },
1012
+ {
1013
+ "epoch": 0.47,
1014
+ "grad_norm": 0.4865332245826721,
1015
+ "learning_rate": 2.641565080613449e-05,
1016
+ "loss": 1.7855,
1017
+ "step": 7200
1018
+ },
1019
+ {
1020
+ "epoch": 0.48,
1021
+ "grad_norm": 0.513595461845398,
1022
+ "learning_rate": 2.6251802333202257e-05,
1023
+ "loss": 1.7647,
1024
+ "step": 7250
1025
+ },
1026
+ {
1027
+ "epoch": 0.48,
1028
+ "grad_norm": 0.508758544921875,
1029
+ "learning_rate": 2.6087953860270025e-05,
1030
+ "loss": 1.8106,
1031
+ "step": 7300
1032
+ },
1033
+ {
1034
+ "epoch": 0.48,
1035
+ "grad_norm": 0.8143779635429382,
1036
+ "learning_rate": 2.5924105387337794e-05,
1037
+ "loss": 1.7777,
1038
+ "step": 7350
1039
+ },
1040
+ {
1041
+ "epoch": 0.48,
1042
+ "grad_norm": 0.44763991236686707,
1043
+ "learning_rate": 2.5760256914405563e-05,
1044
+ "loss": 1.7972,
1045
+ "step": 7400
1046
+ },
1047
+ {
1048
+ "epoch": 0.49,
1049
+ "grad_norm": 0.6493588089942932,
1050
+ "learning_rate": 2.5596408441473324e-05,
1051
+ "loss": 1.8002,
1052
+ "step": 7450
1053
+ },
1054
+ {
1055
+ "epoch": 0.49,
1056
+ "grad_norm": 0.4406678378582001,
1057
+ "learning_rate": 2.5432559968541093e-05,
1058
+ "loss": 1.7884,
1059
+ "step": 7500
1060
+ },
1061
+ {
1062
+ "epoch": 0.49,
1063
+ "grad_norm": 0.500289797782898,
1064
+ "learning_rate": 2.526871149560886e-05,
1065
+ "loss": 1.7323,
1066
+ "step": 7550
1067
+ },
1068
+ {
1069
+ "epoch": 0.5,
1070
+ "grad_norm": 0.4473750591278076,
1071
+ "learning_rate": 2.5104863022676627e-05,
1072
+ "loss": 1.7923,
1073
+ "step": 7600
1074
+ },
1075
+ {
1076
+ "epoch": 0.5,
1077
+ "grad_norm": 0.3302167057991028,
1078
+ "learning_rate": 2.49410145497444e-05,
1079
+ "loss": 1.7537,
1080
+ "step": 7650
1081
+ },
1082
+ {
1083
+ "epoch": 0.5,
1084
+ "grad_norm": 0.5885249376296997,
1085
+ "learning_rate": 2.4777166076812167e-05,
1086
+ "loss": 1.769,
1087
+ "step": 7700
1088
+ },
1089
+ {
1090
+ "epoch": 0.51,
1091
+ "grad_norm": 0.3272787034511566,
1092
+ "learning_rate": 2.4613317603879932e-05,
1093
+ "loss": 1.7479,
1094
+ "step": 7750
1095
+ },
1096
+ {
1097
+ "epoch": 0.51,
1098
+ "grad_norm": 0.38857901096343994,
1099
+ "learning_rate": 2.44494691309477e-05,
1100
+ "loss": 1.7615,
1101
+ "step": 7800
1102
+ },
1103
+ {
1104
+ "epoch": 0.51,
1105
+ "grad_norm": 0.7423263192176819,
1106
+ "learning_rate": 2.4285620658015466e-05,
1107
+ "loss": 1.7882,
1108
+ "step": 7850
1109
+ },
1110
+ {
1111
+ "epoch": 0.52,
1112
+ "grad_norm": 0.3933955729007721,
1113
+ "learning_rate": 2.4121772185083235e-05,
1114
+ "loss": 1.804,
1115
+ "step": 7900
1116
+ },
1117
+ {
1118
+ "epoch": 0.52,
1119
+ "grad_norm": 0.3640703856945038,
1120
+ "learning_rate": 2.3957923712151003e-05,
1121
+ "loss": 1.7408,
1122
+ "step": 7950
1123
+ },
1124
+ {
1125
+ "epoch": 0.52,
1126
+ "grad_norm": 0.7845476865768433,
1127
+ "learning_rate": 2.3794075239218772e-05,
1128
+ "loss": 1.8048,
1129
+ "step": 8000
1130
+ },
1131
+ {
1132
+ "epoch": 0.53,
1133
+ "grad_norm": 0.46670156717300415,
1134
+ "learning_rate": 2.363022676628654e-05,
1135
+ "loss": 1.7889,
1136
+ "step": 8050
1137
+ },
1138
+ {
1139
+ "epoch": 0.53,
1140
+ "grad_norm": 0.5479481220245361,
1141
+ "learning_rate": 2.346637829335431e-05,
1142
+ "loss": 1.7725,
1143
+ "step": 8100
1144
+ },
1145
+ {
1146
+ "epoch": 0.53,
1147
+ "grad_norm": 0.4924238324165344,
1148
+ "learning_rate": 2.3302529820422074e-05,
1149
+ "loss": 1.7956,
1150
+ "step": 8150
1151
+ },
1152
+ {
1153
+ "epoch": 0.54,
1154
+ "grad_norm": 0.5267847776412964,
1155
+ "learning_rate": 2.3138681347489843e-05,
1156
+ "loss": 1.7683,
1157
+ "step": 8200
1158
+ },
1159
+ {
1160
+ "epoch": 0.54,
1161
+ "grad_norm": 0.42921149730682373,
1162
+ "learning_rate": 2.297483287455761e-05,
1163
+ "loss": 1.7662,
1164
+ "step": 8250
1165
+ },
1166
+ {
1167
+ "epoch": 0.54,
1168
+ "grad_norm": 0.4606122374534607,
1169
+ "learning_rate": 2.281098440162538e-05,
1170
+ "loss": 1.7773,
1171
+ "step": 8300
1172
+ },
1173
+ {
1174
+ "epoch": 0.55,
1175
+ "grad_norm": 0.4239887595176697,
1176
+ "learning_rate": 2.2647135928693145e-05,
1177
+ "loss": 1.7753,
1178
+ "step": 8350
1179
+ },
1180
+ {
1181
+ "epoch": 0.55,
1182
+ "grad_norm": 0.46374326944351196,
1183
+ "learning_rate": 2.2483287455760914e-05,
1184
+ "loss": 1.814,
1185
+ "step": 8400
1186
+ },
1187
+ {
1188
+ "epoch": 0.55,
1189
+ "grad_norm": 0.3622525632381439,
1190
+ "learning_rate": 2.231943898282868e-05,
1191
+ "loss": 1.7955,
1192
+ "step": 8450
1193
+ },
1194
+ {
1195
+ "epoch": 0.56,
1196
+ "grad_norm": 0.7099259495735168,
1197
+ "learning_rate": 2.2155590509896447e-05,
1198
+ "loss": 1.8063,
1199
+ "step": 8500
1200
+ },
1201
+ {
1202
+ "epoch": 0.56,
1203
+ "grad_norm": 0.4248027801513672,
1204
+ "learning_rate": 2.1991742036964216e-05,
1205
+ "loss": 1.7714,
1206
+ "step": 8550
1207
+ },
1208
+ {
1209
+ "epoch": 0.56,
1210
+ "grad_norm": 0.3817599415779114,
1211
+ "learning_rate": 2.1827893564031985e-05,
1212
+ "loss": 1.8087,
1213
+ "step": 8600
1214
+ },
1215
+ {
1216
+ "epoch": 0.57,
1217
+ "grad_norm": 0.4455879032611847,
1218
+ "learning_rate": 2.1664045091099753e-05,
1219
+ "loss": 1.7811,
1220
+ "step": 8650
1221
+ },
1222
+ {
1223
+ "epoch": 0.57,
1224
+ "grad_norm": 0.4604770243167877,
1225
+ "learning_rate": 2.1500196618167522e-05,
1226
+ "loss": 1.7511,
1227
+ "step": 8700
1228
+ },
1229
+ {
1230
+ "epoch": 0.57,
1231
+ "grad_norm": 0.43301329016685486,
1232
+ "learning_rate": 2.1336348145235287e-05,
1233
+ "loss": 1.762,
1234
+ "step": 8750
1235
+ },
1236
+ {
1237
+ "epoch": 0.58,
1238
+ "grad_norm": 0.4077916741371155,
1239
+ "learning_rate": 2.1172499672303055e-05,
1240
+ "loss": 1.7512,
1241
+ "step": 8800
1242
+ },
1243
+ {
1244
+ "epoch": 0.58,
1245
+ "grad_norm": 0.3406469225883484,
1246
+ "learning_rate": 2.1008651199370824e-05,
1247
+ "loss": 1.8008,
1248
+ "step": 8850
1249
+ },
1250
+ {
1251
+ "epoch": 0.58,
1252
+ "grad_norm": 1.0516856908798218,
1253
+ "learning_rate": 2.084480272643859e-05,
1254
+ "loss": 1.7822,
1255
+ "step": 8900
1256
+ },
1257
+ {
1258
+ "epoch": 0.59,
1259
+ "grad_norm": 0.4626096189022064,
1260
+ "learning_rate": 2.0680954253506358e-05,
1261
+ "loss": 1.7883,
1262
+ "step": 8950
1263
+ },
1264
+ {
1265
+ "epoch": 0.59,
1266
+ "grad_norm": 0.9625229239463806,
1267
+ "learning_rate": 2.0517105780574126e-05,
1268
+ "loss": 1.7423,
1269
+ "step": 9000
1270
+ },
1271
+ {
1272
+ "epoch": 0.59,
1273
+ "grad_norm": 0.5017744302749634,
1274
+ "learning_rate": 2.035325730764189e-05,
1275
+ "loss": 1.7559,
1276
+ "step": 9050
1277
+ },
1278
+ {
1279
+ "epoch": 0.6,
1280
+ "grad_norm": 0.41525375843048096,
1281
+ "learning_rate": 2.018940883470966e-05,
1282
+ "loss": 1.7961,
1283
+ "step": 9100
1284
+ },
1285
+ {
1286
+ "epoch": 0.6,
1287
+ "grad_norm": 0.48959624767303467,
1288
+ "learning_rate": 2.002556036177743e-05,
1289
+ "loss": 1.797,
1290
+ "step": 9150
1291
+ },
1292
+ {
1293
+ "epoch": 0.6,
1294
+ "grad_norm": 0.5421375036239624,
1295
+ "learning_rate": 1.9861711888845197e-05,
1296
+ "loss": 1.7637,
1297
+ "step": 9200
1298
+ },
1299
+ {
1300
+ "epoch": 0.61,
1301
+ "grad_norm": 0.47492170333862305,
1302
+ "learning_rate": 1.9697863415912966e-05,
1303
+ "loss": 1.7559,
1304
+ "step": 9250
1305
+ },
1306
+ {
1307
+ "epoch": 0.61,
1308
+ "grad_norm": 0.8118923902511597,
1309
+ "learning_rate": 1.9534014942980734e-05,
1310
+ "loss": 1.8089,
1311
+ "step": 9300
1312
+ },
1313
+ {
1314
+ "epoch": 0.61,
1315
+ "grad_norm": 0.6577257513999939,
1316
+ "learning_rate": 1.93701664700485e-05,
1317
+ "loss": 1.7974,
1318
+ "step": 9350
1319
+ },
1320
+ {
1321
+ "epoch": 0.62,
1322
+ "grad_norm": 0.3861309587955475,
1323
+ "learning_rate": 1.9206317997116268e-05,
1324
+ "loss": 1.7601,
1325
+ "step": 9400
1326
+ },
1327
+ {
1328
+ "epoch": 0.62,
1329
+ "grad_norm": 0.4553438723087311,
1330
+ "learning_rate": 1.9042469524184037e-05,
1331
+ "loss": 1.8411,
1332
+ "step": 9450
1333
+ },
1334
+ {
1335
+ "epoch": 0.62,
1336
+ "grad_norm": 0.5294969081878662,
1337
+ "learning_rate": 1.8878621051251802e-05,
1338
+ "loss": 1.8056,
1339
+ "step": 9500
1340
+ },
1341
+ {
1342
+ "epoch": 0.63,
1343
+ "grad_norm": 0.4538947641849518,
1344
+ "learning_rate": 1.871477257831957e-05,
1345
+ "loss": 1.7922,
1346
+ "step": 9550
1347
+ },
1348
+ {
1349
+ "epoch": 0.63,
1350
+ "grad_norm": 0.40422508120536804,
1351
+ "learning_rate": 1.855092410538734e-05,
1352
+ "loss": 1.7954,
1353
+ "step": 9600
1354
+ },
1355
+ {
1356
+ "epoch": 0.63,
1357
+ "grad_norm": 0.9616673588752747,
1358
+ "learning_rate": 1.8387075632455104e-05,
1359
+ "loss": 1.7896,
1360
+ "step": 9650
1361
+ },
1362
+ {
1363
+ "epoch": 0.64,
1364
+ "grad_norm": 0.3476395606994629,
1365
+ "learning_rate": 1.8223227159522873e-05,
1366
+ "loss": 1.8015,
1367
+ "step": 9700
1368
+ },
1369
+ {
1370
+ "epoch": 0.64,
1371
+ "grad_norm": 0.388485312461853,
1372
+ "learning_rate": 1.805937868659064e-05,
1373
+ "loss": 1.7918,
1374
+ "step": 9750
1375
+ },
1376
+ {
1377
+ "epoch": 0.64,
1378
+ "grad_norm": 0.5417673587799072,
1379
+ "learning_rate": 1.789553021365841e-05,
1380
+ "loss": 1.7444,
1381
+ "step": 9800
1382
+ },
1383
+ {
1384
+ "epoch": 0.65,
1385
+ "grad_norm": 0.3682622015476227,
1386
+ "learning_rate": 1.773168174072618e-05,
1387
+ "loss": 1.7803,
1388
+ "step": 9850
1389
+ },
1390
+ {
1391
+ "epoch": 0.65,
1392
+ "grad_norm": 0.6654282212257385,
1393
+ "learning_rate": 1.7567833267793947e-05,
1394
+ "loss": 1.7559,
1395
+ "step": 9900
1396
+ },
1397
+ {
1398
+ "epoch": 0.65,
1399
+ "grad_norm": 0.5030877590179443,
1400
+ "learning_rate": 1.7403984794861712e-05,
1401
+ "loss": 1.7657,
1402
+ "step": 9950
1403
+ },
1404
+ {
1405
+ "epoch": 0.66,
1406
+ "grad_norm": 0.627768874168396,
1407
+ "learning_rate": 1.724013632192948e-05,
1408
+ "loss": 1.7261,
1409
+ "step": 10000
1410
+ },
1411
+ {
1412
+ "epoch": 0.66,
1413
+ "grad_norm": 0.4117398262023926,
1414
+ "learning_rate": 1.707628784899725e-05,
1415
+ "loss": 1.7837,
1416
+ "step": 10050
1417
+ },
1418
+ {
1419
+ "epoch": 0.66,
1420
+ "grad_norm": 0.40106311440467834,
1421
+ "learning_rate": 1.6912439376065015e-05,
1422
+ "loss": 1.7961,
1423
+ "step": 10100
1424
+ },
1425
+ {
1426
+ "epoch": 0.67,
1427
+ "grad_norm": 0.32165274024009705,
1428
+ "learning_rate": 1.6748590903132783e-05,
1429
+ "loss": 1.7629,
1430
+ "step": 10150
1431
+ },
1432
+ {
1433
+ "epoch": 0.67,
1434
+ "grad_norm": 0.47640106081962585,
1435
+ "learning_rate": 1.6584742430200552e-05,
1436
+ "loss": 1.777,
1437
+ "step": 10200
1438
+ },
1439
+ {
1440
+ "epoch": 0.67,
1441
+ "grad_norm": 0.45250073075294495,
1442
+ "learning_rate": 1.6420893957268317e-05,
1443
+ "loss": 1.771,
1444
+ "step": 10250
1445
+ },
1446
+ {
1447
+ "epoch": 0.67,
1448
+ "grad_norm": 0.45913493633270264,
1449
+ "learning_rate": 1.6257045484336086e-05,
1450
+ "loss": 1.7971,
1451
+ "step": 10300
1452
+ },
1453
+ {
1454
+ "epoch": 0.68,
1455
+ "grad_norm": 0.5237872004508972,
1456
+ "learning_rate": 1.6093197011403854e-05,
1457
+ "loss": 1.7989,
1458
+ "step": 10350
1459
+ },
1460
+ {
1461
+ "epoch": 0.68,
1462
+ "grad_norm": 0.47246378660202026,
1463
+ "learning_rate": 1.5929348538471623e-05,
1464
+ "loss": 1.7867,
1465
+ "step": 10400
1466
+ },
1467
+ {
1468
+ "epoch": 0.68,
1469
+ "grad_norm": 0.3215338885784149,
1470
+ "learning_rate": 1.576550006553939e-05,
1471
+ "loss": 1.7864,
1472
+ "step": 10450
1473
+ },
1474
+ {
1475
+ "epoch": 0.69,
1476
+ "grad_norm": 1.0621765851974487,
1477
+ "learning_rate": 1.560165159260716e-05,
1478
+ "loss": 1.7482,
1479
+ "step": 10500
1480
+ },
1481
+ {
1482
+ "epoch": 0.69,
1483
+ "grad_norm": 0.5376123785972595,
1484
+ "learning_rate": 1.5437803119674925e-05,
1485
+ "loss": 1.7635,
1486
+ "step": 10550
1487
+ },
1488
+ {
1489
+ "epoch": 0.69,
1490
+ "grad_norm": 0.8421134352684021,
1491
+ "learning_rate": 1.5273954646742694e-05,
1492
+ "loss": 1.7854,
1493
+ "step": 10600
1494
+ },
1495
+ {
1496
+ "epoch": 0.7,
1497
+ "grad_norm": 0.4911418855190277,
1498
+ "learning_rate": 1.5110106173810462e-05,
1499
+ "loss": 1.7514,
1500
+ "step": 10650
1501
+ },
1502
+ {
1503
+ "epoch": 0.7,
1504
+ "grad_norm": 0.32285892963409424,
1505
+ "learning_rate": 1.4946257700878227e-05,
1506
+ "loss": 1.7701,
1507
+ "step": 10700
1508
+ },
1509
+ {
1510
+ "epoch": 0.7,
1511
+ "grad_norm": 0.6105034947395325,
1512
+ "learning_rate": 1.4782409227945996e-05,
1513
+ "loss": 1.7726,
1514
+ "step": 10750
1515
+ },
1516
+ {
1517
+ "epoch": 0.71,
1518
+ "grad_norm": 0.36749064922332764,
1519
+ "learning_rate": 1.4618560755013763e-05,
1520
+ "loss": 1.8059,
1521
+ "step": 10800
1522
+ },
1523
+ {
1524
+ "epoch": 0.71,
1525
+ "grad_norm": 0.46773606538772583,
1526
+ "learning_rate": 1.4454712282081531e-05,
1527
+ "loss": 1.8167,
1528
+ "step": 10850
1529
+ },
1530
+ {
1531
+ "epoch": 0.71,
1532
+ "grad_norm": 0.5864791870117188,
1533
+ "learning_rate": 1.42908638091493e-05,
1534
+ "loss": 1.7503,
1535
+ "step": 10900
1536
+ },
1537
+ {
1538
+ "epoch": 0.72,
1539
+ "grad_norm": 0.5605257153511047,
1540
+ "learning_rate": 1.4127015336217067e-05,
1541
+ "loss": 1.8021,
1542
+ "step": 10950
1543
+ },
1544
+ {
1545
+ "epoch": 0.72,
1546
+ "grad_norm": 0.6443638205528259,
1547
+ "learning_rate": 1.3963166863284835e-05,
1548
+ "loss": 1.7622,
1549
+ "step": 11000
1550
+ },
1551
+ {
1552
+ "epoch": 0.72,
1553
+ "grad_norm": 0.323830246925354,
1554
+ "learning_rate": 1.3799318390352602e-05,
1555
+ "loss": 1.7814,
1556
+ "step": 11050
1557
+ },
1558
+ {
1559
+ "epoch": 0.73,
1560
+ "grad_norm": 0.5781140327453613,
1561
+ "learning_rate": 1.363546991742037e-05,
1562
+ "loss": 1.7693,
1563
+ "step": 11100
1564
+ },
1565
+ {
1566
+ "epoch": 0.73,
1567
+ "grad_norm": 0.7093366980552673,
1568
+ "learning_rate": 1.347162144448814e-05,
1569
+ "loss": 1.7426,
1570
+ "step": 11150
1571
+ },
1572
+ {
1573
+ "epoch": 0.73,
1574
+ "grad_norm": 0.4438339173793793,
1575
+ "learning_rate": 1.3307772971555906e-05,
1576
+ "loss": 1.7855,
1577
+ "step": 11200
1578
+ },
1579
+ {
1580
+ "epoch": 0.74,
1581
+ "grad_norm": 0.4285770356655121,
1582
+ "learning_rate": 1.3143924498623675e-05,
1583
+ "loss": 1.7898,
1584
+ "step": 11250
1585
+ },
1586
+ {
1587
+ "epoch": 0.74,
1588
+ "grad_norm": 0.6678707599639893,
1589
+ "learning_rate": 1.298007602569144e-05,
1590
+ "loss": 1.7668,
1591
+ "step": 11300
1592
+ },
1593
+ {
1594
+ "epoch": 0.74,
1595
+ "grad_norm": 0.5140306353569031,
1596
+ "learning_rate": 1.2816227552759209e-05,
1597
+ "loss": 1.7804,
1598
+ "step": 11350
1599
+ },
1600
+ {
1601
+ "epoch": 0.75,
1602
+ "grad_norm": 0.3694643974304199,
1603
+ "learning_rate": 1.2652379079826975e-05,
1604
+ "loss": 1.7633,
1605
+ "step": 11400
1606
+ },
1607
+ {
1608
+ "epoch": 0.75,
1609
+ "grad_norm": 0.3662973940372467,
1610
+ "learning_rate": 1.2488530606894744e-05,
1611
+ "loss": 1.758,
1612
+ "step": 11450
1613
+ },
1614
+ {
1615
+ "epoch": 0.75,
1616
+ "grad_norm": 0.41093963384628296,
1617
+ "learning_rate": 1.2324682133962513e-05,
1618
+ "loss": 1.7501,
1619
+ "step": 11500
1620
+ },
1621
+ {
1622
+ "epoch": 0.76,
1623
+ "grad_norm": 0.4775155782699585,
1624
+ "learning_rate": 1.216083366103028e-05,
1625
+ "loss": 1.7986,
1626
+ "step": 11550
1627
+ },
1628
+ {
1629
+ "epoch": 0.76,
1630
+ "grad_norm": 0.36493539810180664,
1631
+ "learning_rate": 1.1996985188098048e-05,
1632
+ "loss": 1.7555,
1633
+ "step": 11600
1634
+ },
1635
+ {
1636
+ "epoch": 0.76,
1637
+ "grad_norm": 0.9100409746170044,
1638
+ "learning_rate": 1.1833136715165815e-05,
1639
+ "loss": 1.7505,
1640
+ "step": 11650
1641
+ },
1642
+ {
1643
+ "epoch": 0.77,
1644
+ "grad_norm": 0.41831496357917786,
1645
+ "learning_rate": 1.1669288242233583e-05,
1646
+ "loss": 1.7612,
1647
+ "step": 11700
1648
+ },
1649
+ {
1650
+ "epoch": 0.77,
1651
+ "grad_norm": 0.4716850221157074,
1652
+ "learning_rate": 1.150543976930135e-05,
1653
+ "loss": 1.7838,
1654
+ "step": 11750
1655
+ },
1656
+ {
1657
+ "epoch": 0.77,
1658
+ "grad_norm": 0.3609485924243927,
1659
+ "learning_rate": 1.1341591296369119e-05,
1660
+ "loss": 1.7926,
1661
+ "step": 11800
1662
+ },
1663
+ {
1664
+ "epoch": 0.78,
1665
+ "grad_norm": 0.3157222270965576,
1666
+ "learning_rate": 1.1177742823436886e-05,
1667
+ "loss": 1.7448,
1668
+ "step": 11850
1669
+ },
1670
+ {
1671
+ "epoch": 0.78,
1672
+ "grad_norm": 0.46687546372413635,
1673
+ "learning_rate": 1.1013894350504654e-05,
1674
+ "loss": 1.7975,
1675
+ "step": 11900
1676
+ },
1677
+ {
1678
+ "epoch": 0.78,
1679
+ "grad_norm": 0.6575301289558411,
1680
+ "learning_rate": 1.0850045877572421e-05,
1681
+ "loss": 1.736,
1682
+ "step": 11950
1683
+ },
1684
+ {
1685
+ "epoch": 0.79,
1686
+ "grad_norm": 1.4544192552566528,
1687
+ "learning_rate": 1.0686197404640188e-05,
1688
+ "loss": 1.7763,
1689
+ "step": 12000
1690
+ },
1691
+ {
1692
+ "epoch": 0.79,
1693
+ "grad_norm": 0.5222745537757874,
1694
+ "learning_rate": 1.0522348931707957e-05,
1695
+ "loss": 1.7786,
1696
+ "step": 12050
1697
+ },
1698
+ {
1699
+ "epoch": 0.79,
1700
+ "grad_norm": 0.6186469197273254,
1701
+ "learning_rate": 1.0358500458775725e-05,
1702
+ "loss": 1.7963,
1703
+ "step": 12100
1704
+ },
1705
+ {
1706
+ "epoch": 0.8,
1707
+ "grad_norm": 1.1090551614761353,
1708
+ "learning_rate": 1.0194651985843492e-05,
1709
+ "loss": 1.808,
1710
+ "step": 12150
1711
+ },
1712
+ {
1713
+ "epoch": 0.8,
1714
+ "grad_norm": 0.46629172563552856,
1715
+ "learning_rate": 1.003080351291126e-05,
1716
+ "loss": 1.7754,
1717
+ "step": 12200
1718
+ },
1719
+ {
1720
+ "epoch": 0.8,
1721
+ "grad_norm": 1.5671145915985107,
1722
+ "learning_rate": 9.866955039979028e-06,
1723
+ "loss": 1.7846,
1724
+ "step": 12250
1725
+ },
1726
+ {
1727
+ "epoch": 0.81,
1728
+ "grad_norm": 0.5020501613616943,
1729
+ "learning_rate": 9.703106567046794e-06,
1730
+ "loss": 1.753,
1731
+ "step": 12300
1732
+ },
1733
+ {
1734
+ "epoch": 0.81,
1735
+ "grad_norm": 0.34436970949172974,
1736
+ "learning_rate": 9.539258094114563e-06,
1737
+ "loss": 1.8023,
1738
+ "step": 12350
1739
+ },
1740
+ {
1741
+ "epoch": 0.81,
1742
+ "grad_norm": 0.4563136100769043,
1743
+ "learning_rate": 9.375409621182332e-06,
1744
+ "loss": 1.7644,
1745
+ "step": 12400
1746
+ },
1747
+ {
1748
+ "epoch": 0.82,
1749
+ "grad_norm": 0.3465505540370941,
1750
+ "learning_rate": 9.211561148250098e-06,
1751
+ "loss": 1.7819,
1752
+ "step": 12450
1753
+ },
1754
+ {
1755
+ "epoch": 0.82,
1756
+ "grad_norm": 0.4823606610298157,
1757
+ "learning_rate": 9.047712675317867e-06,
1758
+ "loss": 1.7626,
1759
+ "step": 12500
1760
+ },
1761
+ {
1762
+ "epoch": 0.82,
1763
+ "grad_norm": 0.5832303166389465,
1764
+ "learning_rate": 8.883864202385634e-06,
1765
+ "loss": 1.724,
1766
+ "step": 12550
1767
+ },
1768
+ {
1769
+ "epoch": 0.83,
1770
+ "grad_norm": 0.590023934841156,
1771
+ "learning_rate": 8.7200157294534e-06,
1772
+ "loss": 1.7708,
1773
+ "step": 12600
1774
+ },
1775
+ {
1776
+ "epoch": 0.83,
1777
+ "grad_norm": 0.3506929278373718,
1778
+ "learning_rate": 8.55616725652117e-06,
1779
+ "loss": 1.7979,
1780
+ "step": 12650
1781
+ },
1782
+ {
1783
+ "epoch": 0.83,
1784
+ "grad_norm": 0.5510967373847961,
1785
+ "learning_rate": 8.392318783588938e-06,
1786
+ "loss": 1.7531,
1787
+ "step": 12700
1788
+ },
1789
+ {
1790
+ "epoch": 0.84,
1791
+ "grad_norm": 0.4131988286972046,
1792
+ "learning_rate": 8.228470310656705e-06,
1793
+ "loss": 1.7869,
1794
+ "step": 12750
1795
+ },
1796
+ {
1797
+ "epoch": 0.84,
1798
+ "grad_norm": 0.3922310173511505,
1799
+ "learning_rate": 8.064621837724473e-06,
1800
+ "loss": 1.8283,
1801
+ "step": 12800
1802
+ },
1803
+ {
1804
+ "epoch": 0.84,
1805
+ "grad_norm": 0.4114150106906891,
1806
+ "learning_rate": 7.90077336479224e-06,
1807
+ "loss": 1.8061,
1808
+ "step": 12850
1809
+ },
1810
+ {
1811
+ "epoch": 0.85,
1812
+ "grad_norm": 0.5551263093948364,
1813
+ "learning_rate": 7.736924891860007e-06,
1814
+ "loss": 1.8083,
1815
+ "step": 12900
1816
+ },
1817
+ {
1818
+ "epoch": 0.85,
1819
+ "grad_norm": 0.4596497714519501,
1820
+ "learning_rate": 7.573076418927776e-06,
1821
+ "loss": 1.768,
1822
+ "step": 12950
1823
+ },
1824
+ {
1825
+ "epoch": 0.85,
1826
+ "grad_norm": 0.5840251445770264,
1827
+ "learning_rate": 7.409227945995543e-06,
1828
+ "loss": 1.7793,
1829
+ "step": 13000
1830
+ },
1831
+ {
1832
+ "epoch": 0.86,
1833
+ "grad_norm": 0.6608572602272034,
1834
+ "learning_rate": 7.245379473063311e-06,
1835
+ "loss": 1.7433,
1836
+ "step": 13050
1837
+ },
1838
+ {
1839
+ "epoch": 0.86,
1840
+ "grad_norm": 0.4415280818939209,
1841
+ "learning_rate": 7.08153100013108e-06,
1842
+ "loss": 1.7555,
1843
+ "step": 13100
1844
+ },
1845
+ {
1846
+ "epoch": 0.86,
1847
+ "grad_norm": 0.8738279938697815,
1848
+ "learning_rate": 6.9176825271988474e-06,
1849
+ "loss": 1.7655,
1850
+ "step": 13150
1851
+ },
1852
+ {
1853
+ "epoch": 0.87,
1854
+ "grad_norm": 0.5214579105377197,
1855
+ "learning_rate": 6.753834054266614e-06,
1856
+ "loss": 1.7626,
1857
+ "step": 13200
1858
+ },
1859
+ {
1860
+ "epoch": 0.87,
1861
+ "grad_norm": 0.42428484559059143,
1862
+ "learning_rate": 6.589985581334382e-06,
1863
+ "loss": 1.754,
1864
+ "step": 13250
1865
+ },
1866
+ {
1867
+ "epoch": 0.87,
1868
+ "grad_norm": 0.4472542703151703,
1869
+ "learning_rate": 6.42613710840215e-06,
1870
+ "loss": 1.8004,
1871
+ "step": 13300
1872
+ },
1873
+ {
1874
+ "epoch": 0.87,
1875
+ "grad_norm": 0.44398799538612366,
1876
+ "learning_rate": 6.2622886354699175e-06,
1877
+ "loss": 1.7692,
1878
+ "step": 13350
1879
+ },
1880
+ {
1881
+ "epoch": 0.88,
1882
+ "grad_norm": 0.39280277490615845,
1883
+ "learning_rate": 6.098440162537685e-06,
1884
+ "loss": 1.756,
1885
+ "step": 13400
1886
+ },
1887
+ {
1888
+ "epoch": 0.88,
1889
+ "grad_norm": 0.5377512574195862,
1890
+ "learning_rate": 5.934591689605453e-06,
1891
+ "loss": 1.8203,
1892
+ "step": 13450
1893
+ },
1894
+ {
1895
+ "epoch": 0.88,
1896
+ "grad_norm": 0.384995698928833,
1897
+ "learning_rate": 5.770743216673221e-06,
1898
+ "loss": 1.7671,
1899
+ "step": 13500
1900
+ },
1901
+ {
1902
+ "epoch": 0.89,
1903
+ "grad_norm": 0.5518258810043335,
1904
+ "learning_rate": 5.606894743740988e-06,
1905
+ "loss": 1.7892,
1906
+ "step": 13550
1907
+ },
1908
+ {
1909
+ "epoch": 0.89,
1910
+ "grad_norm": 0.5481269955635071,
1911
+ "learning_rate": 5.443046270808756e-06,
1912
+ "loss": 1.7621,
1913
+ "step": 13600
1914
+ },
1915
+ {
1916
+ "epoch": 0.89,
1917
+ "grad_norm": 0.6983498930931091,
1918
+ "learning_rate": 5.279197797876524e-06,
1919
+ "loss": 1.7699,
1920
+ "step": 13650
1921
+ },
1922
+ {
1923
+ "epoch": 0.9,
1924
+ "grad_norm": 0.42530539631843567,
1925
+ "learning_rate": 5.1153493249442916e-06,
1926
+ "loss": 1.781,
1927
+ "step": 13700
1928
+ },
1929
+ {
1930
+ "epoch": 0.9,
1931
+ "grad_norm": 0.5558788776397705,
1932
+ "learning_rate": 4.951500852012059e-06,
1933
+ "loss": 1.7386,
1934
+ "step": 13750
1935
+ },
1936
+ {
1937
+ "epoch": 0.9,
1938
+ "grad_norm": 0.40052852034568787,
1939
+ "learning_rate": 4.787652379079827e-06,
1940
+ "loss": 1.7761,
1941
+ "step": 13800
1942
+ },
1943
+ {
1944
+ "epoch": 0.91,
1945
+ "grad_norm": 0.3250432312488556,
1946
+ "learning_rate": 4.623803906147595e-06,
1947
+ "loss": 1.7782,
1948
+ "step": 13850
1949
+ },
1950
+ {
1951
+ "epoch": 0.91,
1952
+ "grad_norm": 0.38817328214645386,
1953
+ "learning_rate": 4.4599554332153624e-06,
1954
+ "loss": 1.7407,
1955
+ "step": 13900
1956
+ },
1957
+ {
1958
+ "epoch": 0.91,
1959
+ "grad_norm": 0.49112117290496826,
1960
+ "learning_rate": 4.29610696028313e-06,
1961
+ "loss": 1.7229,
1962
+ "step": 13950
1963
+ },
1964
+ {
1965
+ "epoch": 0.92,
1966
+ "grad_norm": 2.6235454082489014,
1967
+ "learning_rate": 4.132258487350898e-06,
1968
+ "loss": 1.7547,
1969
+ "step": 14000
1970
+ },
1971
+ {
1972
+ "epoch": 0.92,
1973
+ "grad_norm": 0.4624078571796417,
1974
+ "learning_rate": 3.968410014418666e-06,
1975
+ "loss": 1.8014,
1976
+ "step": 14050
1977
+ },
1978
+ {
1979
+ "epoch": 0.92,
1980
+ "grad_norm": 0.3169557452201843,
1981
+ "learning_rate": 3.8045615414864338e-06,
1982
+ "loss": 1.7387,
1983
+ "step": 14100
1984
+ },
1985
+ {
1986
+ "epoch": 0.93,
1987
+ "grad_norm": 0.6099672913551331,
1988
+ "learning_rate": 3.640713068554201e-06,
1989
+ "loss": 1.8081,
1990
+ "step": 14150
1991
+ },
1992
+ {
1993
+ "epoch": 0.93,
1994
+ "grad_norm": 0.4258570969104767,
1995
+ "learning_rate": 3.4768645956219688e-06,
1996
+ "loss": 1.7663,
1997
+ "step": 14200
1998
+ },
1999
+ {
2000
+ "epoch": 0.93,
2001
+ "grad_norm": 2.3566250801086426,
2002
+ "learning_rate": 3.313016122689737e-06,
2003
+ "loss": 1.7435,
2004
+ "step": 14250
2005
+ },
2006
+ {
2007
+ "epoch": 0.94,
2008
+ "grad_norm": 0.4608743190765381,
2009
+ "learning_rate": 3.1491676497575042e-06,
2010
+ "loss": 1.7605,
2011
+ "step": 14300
2012
+ },
2013
+ {
2014
+ "epoch": 0.94,
2015
+ "grad_norm": 0.38116034865379333,
2016
+ "learning_rate": 2.985319176825272e-06,
2017
+ "loss": 1.7673,
2018
+ "step": 14350
2019
+ },
2020
+ {
2021
+ "epoch": 0.94,
2022
+ "grad_norm": 0.5122969746589661,
2023
+ "learning_rate": 2.8214707038930397e-06,
2024
+ "loss": 1.767,
2025
+ "step": 14400
2026
+ },
2027
+ {
2028
+ "epoch": 0.95,
2029
+ "grad_norm": 0.5967180132865906,
2030
+ "learning_rate": 2.657622230960808e-06,
2031
+ "loss": 1.8025,
2032
+ "step": 14450
2033
+ },
2034
+ {
2035
+ "epoch": 0.95,
2036
+ "grad_norm": 0.4944264590740204,
2037
+ "learning_rate": 2.493773758028575e-06,
2038
+ "loss": 1.7947,
2039
+ "step": 14500
2040
+ },
2041
+ {
2042
+ "epoch": 0.95,
2043
+ "grad_norm": 0.353904128074646,
2044
+ "learning_rate": 2.329925285096343e-06,
2045
+ "loss": 1.795,
2046
+ "step": 14550
2047
+ },
2048
+ {
2049
+ "epoch": 0.96,
2050
+ "grad_norm": 0.531599223613739,
2051
+ "learning_rate": 2.166076812164111e-06,
2052
+ "loss": 1.7888,
2053
+ "step": 14600
2054
+ },
2055
+ {
2056
+ "epoch": 0.96,
2057
+ "grad_norm": 0.43692663311958313,
2058
+ "learning_rate": 2.0022283392318783e-06,
2059
+ "loss": 1.7695,
2060
+ "step": 14650
2061
+ },
2062
+ {
2063
+ "epoch": 0.96,
2064
+ "grad_norm": 0.489036500453949,
2065
+ "learning_rate": 1.838379866299646e-06,
2066
+ "loss": 1.7895,
2067
+ "step": 14700
2068
+ },
2069
+ {
2070
+ "epoch": 0.97,
2071
+ "grad_norm": 0.41665858030319214,
2072
+ "learning_rate": 1.674531393367414e-06,
2073
+ "loss": 1.7757,
2074
+ "step": 14750
2075
+ },
2076
+ {
2077
+ "epoch": 0.97,
2078
+ "grad_norm": 0.507135272026062,
2079
+ "learning_rate": 1.5106829204351817e-06,
2080
+ "loss": 1.7717,
2081
+ "step": 14800
2082
+ },
2083
+ {
2084
+ "epoch": 0.97,
2085
+ "grad_norm": 0.4490343928337097,
2086
+ "learning_rate": 1.3468344475029494e-06,
2087
+ "loss": 1.7953,
2088
+ "step": 14850
2089
+ },
2090
+ {
2091
+ "epoch": 0.98,
2092
+ "grad_norm": 0.7222400307655334,
2093
+ "learning_rate": 1.182985974570717e-06,
2094
+ "loss": 1.7899,
2095
+ "step": 14900
2096
+ },
2097
+ {
2098
+ "epoch": 0.98,
2099
+ "grad_norm": 0.46795913577079773,
2100
+ "learning_rate": 1.0191375016384849e-06,
2101
+ "loss": 1.7826,
2102
+ "step": 14950
2103
+ },
2104
+ {
2105
+ "epoch": 0.98,
2106
+ "grad_norm": 1.0008032321929932,
2107
+ "learning_rate": 8.552890287062526e-07,
2108
+ "loss": 1.7784,
2109
+ "step": 15000
2110
+ },
2111
+ {
2112
+ "epoch": 0.99,
2113
+ "grad_norm": 0.5528744459152222,
2114
+ "learning_rate": 6.914405557740202e-07,
2115
+ "loss": 1.7827,
2116
+ "step": 15050
2117
+ },
2118
+ {
2119
+ "epoch": 0.99,
2120
+ "grad_norm": 0.38615551590919495,
2121
+ "learning_rate": 5.275920828417879e-07,
2122
+ "loss": 1.784,
2123
+ "step": 15100
2124
+ },
2125
+ {
2126
+ "epoch": 0.99,
2127
+ "grad_norm": 0.44470590353012085,
2128
+ "learning_rate": 3.6374360990955564e-07,
2129
+ "loss": 1.8012,
2130
+ "step": 15150
2131
+ },
2132
+ {
2133
+ "epoch": 1.0,
2134
+ "grad_norm": 0.39151865243911743,
2135
+ "learning_rate": 1.998951369773234e-07,
2136
+ "loss": 1.7987,
2137
+ "step": 15200
2138
+ },
2139
+ {
2140
+ "epoch": 1.0,
2141
+ "grad_norm": 0.4639741778373718,
2142
+ "learning_rate": 3.60466640450911e-08,
2143
+ "loss": 1.7547,
2144
+ "step": 15250
2145
+ }
2146
+ ],
2147
+ "logging_steps": 50,
2148
+ "max_steps": 15260,
2149
+ "num_input_tokens_seen": 0,
2150
+ "num_train_epochs": 1,
2151
+ "save_steps": 3815,
2152
+ "total_flos": 1.0144210157797009e+20,
2153
+ "train_batch_size": 1,
2154
+ "trial_name": null,
2155
+ "trial_params": null
2156
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:159c5f78c2f0e9f940068cc8d592ff2759448a8c6e4f50e6cf5d852260e7440f
3
+ size 7352