multibert_seed34_1611

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4810
  • Precisions: 0.8743
  • Recall: 0.8016
  • F-measure: 0.8318
  • Accuracy: 0.9364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 34
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4954 1.0 236 0.2579 0.8908 0.7174 0.7485 0.9181
0.2427 2.0 472 0.2589 0.8472 0.7340 0.7497 0.9209
0.1427 3.0 708 0.2844 0.8461 0.7830 0.8096 0.9325
0.0916 4.0 944 0.3453 0.8497 0.7804 0.8122 0.9306
0.0616 5.0 1180 0.3281 0.8500 0.7936 0.8160 0.9303
0.0414 6.0 1416 0.3859 0.8494 0.7930 0.8167 0.9337
0.0272 7.0 1652 0.3863 0.8572 0.7894 0.8167 0.9323
0.0207 8.0 1888 0.3998 0.8525 0.7938 0.8195 0.9337
0.0117 9.0 2124 0.4348 0.8555 0.7983 0.8228 0.9330
0.0089 10.0 2360 0.4858 0.8699 0.7708 0.7996 0.9294
0.0054 11.0 2596 0.4676 0.8559 0.7959 0.8197 0.9344
0.0036 12.0 2832 0.4582 0.8665 0.8038 0.8291 0.9364
0.0025 13.0 3068 0.4810 0.8743 0.8016 0.8318 0.9364
0.0018 14.0 3304 0.4801 0.8685 0.8036 0.8309 0.9366

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/multibert_seed34_1611

Finetuned
(1692)
this model