Add model card for TokenSwift

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +41 -151
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ license: apache-2.0 # Please verify license
5
+ tags: [long-sequence-generation, lossless-acceleration]
6
  ---
7
 
8
+ # Model Card for TokenSwift
 
 
 
9
 
10
+ **TokenSwift** is a novel framework that achieves **lossless acceleration** for ultra-long sequence generation (up to 100K tokens), reducing computation time from hours to minutes.
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ TokenSwift is a framework designed to accelerate the generation of long sequences in large language models without sacrificing the quality of the output. It works as a plug-and-play solution with most Hugging Face models, providing a 3x speedup.
 
 
 
 
 
 
 
 
 
 
17
 
18
+ - **Developed by:** BigAI-NLCO
19
+ - **Model type:** Model Adapter Framework
20
+ - **Language(s) (NLP):** Multiple, depending on the underlying LLM
21
+ - **License:** Apache-2.0 # Please verify license
22
+ - **Finetuned from model [optional]:** Various Hugging Face LLMs (see Inference section)
23
 
24
+ ### Model Sources
25
 
26
+ - **Repository:** [https://github.com/bigai-nlco/TokenSwift](https://github.com/bigai-nlco/TokenSwift)
27
+ - **Paper:** [https://arxiv.org/abs/2502.18890](https://arxiv.org/abs/2502.18890)
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ TokenSwift is used as a framework to accelerate the inference of existing Hugging Face LLMs, particularly for long sequence generation.
 
 
34
 
35
+ ### Downstream Use
36
 
37
+ The accelerated LLMs can be used for any downstream task supported by the underlying base model.
 
 
38
 
39
  ### Out-of-Scope Use
40
 
41
+ TokenSwift is not designed for tasks that do not involve text generation or where short sequence lengths are sufficient.
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
+ TokenSwift inherits the biases and limitations of the underlying language model it is used with.
 
 
46
 
47
  ### Recommendations
48
 
49
+ Users should be aware of the potential biases and limitations of the base language model used with TokenSwift.
 
 
50
 
51
  ## How to Get Started with the Model
52
 
53
+ See the [Inference](#inference) section of the GitHub README for usage instructions. Pre-trained TokenSwift adapters are available on the Hugging Face Hub.
 
 
54
 
55
  ## Training Details
56
 
57
  ### Training Data
58
 
59
+ The training data is derived from the PG-19 dataset. Data longer than 8K tokens are filtered out. Processed training datasets are available at:
60
 
61
+ - llama2-pg19: [https://huggingface.co/datasets/TokenSwift/llama2\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/llama2_pg19_train_data)
62
+ - llama3.1-pg19: [https://huggingface.co/datasets/TokenSwift/llama3.1\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/llama3.1_pg19_train_data)
63
+ - qwen2.5-pg19: [https://huggingface.co/datasets/TokenSwift/qwen2.5\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/qwen2.5_pg19_train_data)
64
 
65
  ### Training Procedure
66
 
67
+ See the [Training Guide](#training-guide-option) section of the GitHub README for details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Evaluation
70
 
71
+ See the GitHub README for benchmark results.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ ## Citation
74
 
75
+ ```bibtex
76
+ @misc{wu2025hoursminuteslosslessacceleration,
77
+ title={From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens},
78
+ author={Tong Wu and Junzhe Shen and Zixia Jia and Yuxuan Wang and Zilong Zheng},
79
+ year={2025},
80
+ eprint={2502.18890},
81
+ archivePrefix={arXiv},
82
+ primaryClass={cs.CL},
83
+ url={https://arxiv.org/abs/2502.18890},
84
+ }
85
+ ```
86
 
87
+ ## Acknowledgment
88
 
89
+ This codebase is influenced by remarkable projects from the LLM community, including [Medusa](https://github.com/FasterDecoding/Medusa/tree/main) and [TriForce](https://github.com/Infini-AI-Lab/TriForce).