GPT-2_para3M

This model is a pretrained version of gpt2 on an Tinystory dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3207

Model description

More information needed

Intended uses & limitations

The limitation of this model are mainly 2 aspects.

  • The number of parameter of the model is only around 3.6 million which is not large. As a result the model cannot generate text in all perspectives.
  • The dataset is only composed of stories, this greatly hinder the performance of the model. Only stories can be generated.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
9.6976 0.01 100 7.7754
6.488 0.02 200 5.7795
5.3705 0.03 300 4.8609
4.5632 0.04 400 4.2544
4.141 0.05 500 3.9425
3.902 0.06 600 3.7189
3.7074 0.07 700 3.5514
3.5716 0.08 800 3.4291
3.4695 0.08 900 3.3253
3.3847 0.09 1000 3.2311
3.2974 0.1 1100 3.1595
3.2318 0.11 1200 3.0909
3.1698 0.12 1300 3.0329
3.1258 0.13 1400 2.9879
3.0802 0.14 1500 2.9396
3.046 0.15 1600 2.9017
3.0047 0.16 1700 2.8652
2.9701 0.17 1800 2.8320
2.9425 0.18 1900 2.8048
2.9141 0.19 2000 2.7757
2.8896 0.2 2100 2.7515
2.8667 0.21 2200 2.7263
2.8443 0.22 2300 2.7066
2.8288 0.23 2400 2.6815
2.8044 0.24 2500 2.6620
2.7886 0.25 2600 2.6471
2.7732 0.25 2700 2.6283
2.7576 0.26 2800 2.6101
2.7479 0.27 2900 2.5978
2.7256 0.28 3000 2.5819
2.7179 0.29 3100 2.5688
2.707 0.3 3200 2.5595
2.6921 0.31 3300 2.5471
2.6809 0.32 3400 2.5329
2.6779 0.33 3500 2.5232
2.663 0.34 3600 2.5154
2.6554 0.35 3700 2.5030
2.6437 0.36 3800 2.4967
2.6346 0.37 3900 2.4859
2.6293 0.38 4000 2.4768
2.6221 0.39 4100 2.4709
2.6178 0.4 4200 2.4623
2.6076 0.41 4300 2.4586
2.6025 0.41 4400 2.4492
2.5907 0.42 4500 2.4409
2.5896 0.43 4600 2.4369
2.5816 0.44 4700 2.4316
2.5783 0.45 4800 2.4256
2.577 0.46 4900 2.4204
2.5685 0.47 5000 2.4150
2.567 0.48 5100 2.4093
2.5564 0.49 5200 2.4059
2.5556 0.5 5300 2.4012
2.5496 0.51 5400 2.3997
2.545 0.52 5500 2.3956
2.5473 0.53 5600 2.3905
2.5389 0.54 5700 2.3856
2.5373 0.55 5800 2.3818
2.5318 0.56 5900 2.3787
2.5313 0.57 6000 2.3751
2.5285 0.58 6100 2.3722
2.5318 0.58 6200 2.3687
2.5229 0.59 6300 2.3666
2.5194 0.6 6400 2.3632
2.5174 0.61 6500 2.3598
2.5169 0.62 6600 2.3567
2.511 0.63 6700 2.3552
2.5093 0.64 6800 2.3546
2.5114 0.65 6900 2.3528
2.5064 0.66 7000 2.3492
2.507 0.67 7100 2.3483
2.502 0.68 7200 2.3445
2.4964 0.69 7300 2.3448
2.4999 0.7 7400 2.3423
2.4961 0.71 7500 2.3407
2.489 0.72 7600 2.3386
2.4926 0.73 7700 2.3384
2.4919 0.74 7800 2.3365
2.491 0.74 7900 2.3349
2.4893 0.75 8000 2.3333
2.4909 0.76 8100 2.3318
2.4862 0.77 8200 2.3305
2.4884 0.78 8300 2.3299
2.49 0.79 8400 2.3280
2.4788 0.8 8500 2.3286
2.4865 0.81 8600 2.3272
2.4823 0.82 8700 2.3263
2.4844 0.83 8800 2.3255
2.4826 0.84 8900 2.3251
2.4844 0.85 9000 2.3243
2.4798 0.86 9100 2.3231
2.4864 0.87 9200 2.3231
2.4755 0.88 9300 2.3228
2.4735 0.89 9400 2.3228
2.4786 0.9 9500 2.3224
2.4791 0.91 9600 2.3222
2.4809 0.91 9700 2.3214
2.4778 0.92 9800 2.3213
2.4777 0.93 9900 2.3211
2.4798 0.94 10000 2.3209
2.4768 0.95 10100 2.3212
2.4808 0.96 10200 2.3209
2.4762 0.97 10300 2.3208
2.4778 0.98 10400 2.3208
2.4816 0.99 10500 2.3207
2.4728 1.0 10600 2.3207

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.2
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Toflamus/GPT-2_para3M

Finetuned
(1320)
this model
Finetunes
2 models