decision_transformer_rb_230
This model is a fine-tuned version of on the city_learn dataset.
Model description
Model on rule based interactions
state_mean = np.array([ 6.5249427917620135, 3.9993135011441647, 12.49771167048055, 16.825446250727847, 16.82580094184701, 16.828741445148562, 16.828180804459944, 72.99828375286042, 73.0012585812357, 72.99359267734553, 73.00102974828376, 208.00308924485125, 208.0545766590389, 208.2866132723112, 207.94530892448512, 201.11270022883295, 201.12254004576658, 201.15926773455377, 200.98135011441647, 0.15644143459640733, 1.064985996011147, 0.6985259305737326, 0.3315403287070356, 0.40782465644916455, 0.27306979145658644, 0.27306979145658644, 0.27306979145658644, 0.27306979145658644])
state_std = np.array([ 3.4517203419362, 2.000572882797276, 6.924445762360648, 3.5581132080274425, 3.558410500805662, 3.563460666518717, 3.562742154586059, 16.491663737463313, 16.493405084016068, 16.495564654312346, 16.49694264406781, 292.5675403707197, 292.54446787504037, 292.792528944882, 292.55912445362566, 296.2258939141665, 296.2202986371211, 296.2051386297462, 296.1393568330303, 0.03533480921331586, 0.8881741764856719, 1.0167875215772866, 0.31636407888767876, 0.9523121450900819, 0.11773822184102951, 0.11773822184102949, 0.1177382218410294, 0.11773822184102911])
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 1