|
--- |
|
license: apache-2.0 |
|
--- |
|
<div style="width: 100%;"> |
|
<img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> |
|
</div> |
|
<p align="center"> |
|
<font face="ι»δ½" size=5"> A cutting-edge foundation for your very own LLM. </font> |
|
</p> |
|
<p align="center"> |
|
π <a href="https://tigerbot.com/" target="_blank">TigerBot</a> β’ π€ <a href="https://huggingface.co./TigerResearch" target="_blank">Hugging Face</a> |
|
</p> |
|
|
|
## Github |
|
|
|
https://github.com/TigerResearch/TigerBot |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from accelerate import infer_auto_device_map, dispatch_model |
|
from accelerate.utils import get_balanced_memory |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") |
|
|
|
max_memory = get_balanced_memory(model) |
|
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"]) |
|
model = dispatch_model(model, device_map=device_map, offload_buffers=True) |
|
|
|
device = torch.cuda.current_device() |
|
|
|
|
|
tok_ins = "\n\n### Instruction:\n" |
|
tok_res = "\n\n### Response:\n" |
|
prompt_input = tok_ins + "{instruction}" + tok_res |
|
|
|
input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]" |
|
input_text = prompt_input.format_map({'instruction': input_text}) |
|
|
|
max_input_length = 512 |
|
max_generate_length = 1024 |
|
generation_kwargs = { |
|
"top_p": 0.95, |
|
"temperature": 0.8, |
|
"max_length": max_generate_length, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"early_stopping": True, |
|
"no_repeat_ngram_size": 4, |
|
} |
|
|
|
inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
output = model.generate(**inputs, **generation_kwargs) |
|
answer = '' |
|
for tok_id in output[0][inputs['input_ids'].shape[1]:]: |
|
if tok_id != tokenizer.eos_token_id: |
|
answer += tokenizer.decode(tok_id) |
|
print(answer) |
|
``` |
|
|