TigerBot

A cutting-edge foundation for your very own LLM.

๐ŸŒ TigerBot โ€ข ๐Ÿค— Hugging Face

Github

https://github.com/TigerResearch/TigerBot

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import infer_auto_device_map, dispatch_model
from accelerate.utils import get_balanced_memory

tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-180b-research")

model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-180b-research")

max_memory = get_balanced_memory(model)
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"])
model = dispatch_model(model, device_map=device_map, offload_buffers=True)

device = torch.cuda.current_device()


tok_ins = "\n\n### Instruction:\n"
tok_res = "\n\n### Response:\n"
prompt_input = tok_ins + "{instruction}" + tok_res

input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]"
input_text = prompt_input.format_map({'instruction': input_text})

max_input_length = 512
max_generate_length = 1024
generation_kwargs = {
        "top_p": 0.95,
        "temperature": 0.8,
        "max_length": max_generate_length,
        "eos_token_id": tokenizer.eos_token_id,
        "pad_token_id": tokenizer.pad_token_id,
        "early_stopping": True,
        "no_repeat_ngram_size": 4,
    }

inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(**inputs, **generation_kwargs)
answer = ''
for tok_id in output[0][inputs['input_ids'].shape[1]:]:
    if tok_id != tokenizer.eos_token_id:
        answer += tokenizer.decode(tok_id)

print(answer)
Downloads last month
25
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.