metadata
language:
- zh
- en
license: apache-2.0
model-index:
- name: tigerbot-13b-base
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.84
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.05
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.57
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.06
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.98
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 17.06
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-13b-base
name: Open LLM Leaderboard
A cutting-edge foundation for your very own LLM.
💻Github • 🌐 TigerBot • 🤗 Hugging Face
快速开始
方法1,通过transformers使用
下载 TigerBot Repo
git clone https://github.com/TigerResearch/TigerBot.git
启动infer代码
python infer.py --model_path TigerResearch/tigerbot-13b-base-v2 --model_type base
方法2:
下载 TigerBot Repo
git clone https://github.com/TigerResearch/TigerBot.git
安装git lfs:
git lfs install
通过huggingface或modelscope平台下载权重
git clone https://huggingface.co./TigerResearch/tigerbot-13b-base-v2 git clone https://www.modelscope.cn/TigerResearch/tigerbot-13b-base-v2.git
启动infer代码
python infer.py --model_path tigerbot-13b-base-v2 --model_type base --max_generate_length 64
Quick Start
Method 1, use through transformers
Clone TigerBot Repo
git clone https://github.com/TigerResearch/TigerBot.git
Run infer script
python infer.py --model_path TigerResearch/tigerbot-13b-base-v2 --model_type base
Method 2:
Clone TigerBot Repo
git clone https://github.com/TigerResearch/TigerBot.git
install git lfs:
git lfs install
Download weights from huggingface or modelscope
git clone https://huggingface.co./TigerResearch/tigerbot-13b-base-v2 git clone https://www.modelscope.cn/TigerResearch/tigerbot-13b-base-v2.git
Run infer script
python infer.py --model_path tigerbot-13b-base-v2 --model_type base --max_generate_length 64
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 52.11 |
ARC (25-shot) | 53.84 |
HellaSwag (10-shot) | 77.05 |
MMLU (5-shot) | 53.57 |
TruthfulQA (0-shot) | 44.06 |
Winogrande (5-shot) | 74.98 |
GSM8K (5-shot) | 17.06 |
DROP (3-shot) | 44.21 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 53.42 |
AI2 Reasoning Challenge (25-Shot) | 53.84 |
HellaSwag (10-Shot) | 77.05 |
MMLU (5-Shot) | 53.57 |
TruthfulQA (0-shot) | 44.06 |
Winogrande (5-shot) | 74.98 |
GSM8k (5-shot) | 17.06 |