SentenceTransformer based on uitnlp/CafeBERT
This is a sentence-transformers model finetuned from uitnlp/CafeBERT. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: uitnlp/CafeBERT
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ThuanPhong/sentence_CafeBERT")
# Run inference
sentences = [
'Chúng tôi đang tiến vào sa mạc.',
'Chúng tôi chuyển đến sa mạc.',
'Người phụ nữ này đang chạy vì cô ta đến muộn.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.5404 |
cosine_accuracy_threshold | 1.0 |
cosine_f1 | 0.6299 |
cosine_f1_threshold | 1.0 |
cosine_precision | 0.4597 |
cosine_recall | 1.0 |
cosine_ap | 0.4597 |
dot_accuracy | 0.5403 |
dot_accuracy_threshold | 46.2905 |
dot_f1 | 0.6299 |
dot_f1_threshold | 46.2905 |
dot_precision | 0.4597 |
dot_recall | 0.9999 |
dot_ap | 0.4578 |
manhattan_accuracy | 0.5411 |
manhattan_accuracy_threshold | 0.0 |
manhattan_f1 | 0.6299 |
manhattan_f1_threshold | 0.0002 |
manhattan_precision | 0.4597 |
manhattan_recall | 1.0 |
manhattan_ap | 0.4604 |
euclidean_accuracy | 0.5412 |
euclidean_accuracy_threshold | 0.0 |
euclidean_f1 | 0.6299 |
euclidean_f1_threshold | 0.0 |
euclidean_precision | 0.4597 |
euclidean_recall | 1.0 |
euclidean_ap | 0.4602 |
max_accuracy | 0.5412 |
max_accuracy_threshold | 46.2905 |
max_f1 | 0.6299 |
max_f1_threshold | 46.2905 |
max_precision | 0.4597 |
max_recall | 1.0 |
max_ap | 0.4604 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 461,625 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 tokens
- mean: 21.87 tokens
- max: 121 tokens
- min: 4 tokens
- mean: 32.19 tokens
- max: 162 tokens
- 0: ~55.90%
- 1: ~44.10%
- Samples:
sentence_0 sentence_1 label Khi nào William Caxton giới thiệu máy in ép vào nước Anh?
Những đặc điểm mà độc giả của Shakespeare ngày nay có thể thấy kỳ quặc hay lỗi thời thường đại diện cho những nét đặc trưng của tiếng Anh trung Đại.
0
Nhưng tôi không biết rằng tôi phải, " Dorcas do dự.
Dorcas sợ phản ứng của họ.
0
Đông Đức là tên gọi thường được sử dụng để chỉ quốc gia nào?
Cộng hòa Dân chủ Đức (tiếng Đức: Deutsche Demokratische Republik, DDR; thường được gọi là Đông Đức) là một quốc gia nay không còn nữa, tồn tại từ 1949 đến 1990 theo định hướng xã hội chủ nghĩa tại phần phía đông nước Đức ngày nay.
1
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | max_ap |
---|---|---|---|
0 | 0 | - | 0.5959 |
0.0087 | 500 | 0.3971 | - |
0.0173 | 1000 | 0.3353 | - |
0.0260 | 1500 | 0.4706 | - |
0.0347 | 2000 | 0.5002 | - |
0.0433 | 2500 | 0.4528 | - |
0.0520 | 3000 | 0.445 | - |
0.0607 | 3500 | 0.428 | - |
0.0693 | 4000 | 0.4305 | - |
0.0780 | 4500 | 0.4428 | - |
0.0866 | 5000 | 0.4358 | - |
0.0953 | 5500 | 0.4309 | - |
0.1040 | 6000 | 0.4221 | - |
0.1126 | 6500 | 0.4283 | - |
0.1213 | 7000 | 0.4218 | - |
0.1300 | 7500 | 0.4176 | - |
0.1386 | 8000 | 0.4227 | - |
0.1473 | 8500 | 0.4174 | - |
0.1560 | 9000 | 0.418 | - |
0.1646 | 9500 | 0.426 | - |
0.1733 | 10000 | 0.4213 | - |
0.1820 | 10500 | 0.4165 | - |
0.1906 | 11000 | 0.417 | - |
0.1993 | 11500 | 0.4262 | - |
0.2080 | 12000 | 0.4192 | - |
0.2166 | 12500 | 0.4162 | - |
0.2253 | 13000 | 0.4136 | - |
0.2340 | 13500 | 0.4037 | - |
0.2426 | 14000 | 0.4234 | - |
0.2513 | 14500 | 0.4225 | - |
0.2599 | 15000 | 0.4143 | - |
0.2686 | 15500 | 0.4178 | - |
0.2773 | 16000 | 0.4172 | - |
0.2859 | 16500 | 0.4305 | - |
0.2946 | 17000 | 0.4193 | - |
0.3033 | 17500 | 0.4144 | - |
0.3119 | 18000 | 0.4192 | - |
0.3206 | 18500 | 0.4172 | - |
0.3293 | 19000 | 0.4253 | - |
0.3379 | 19500 | 0.4211 | - |
0.3466 | 20000 | 0.4197 | - |
0.3553 | 20500 | 0.4219 | - |
0.3639 | 21000 | 0.4307 | - |
0.3726 | 21500 | 0.4332 | - |
0.3813 | 22000 | 0.4201 | - |
0.3899 | 22500 | 0.4273 | - |
0.3986 | 23000 | 0.4218 | - |
0.4073 | 23500 | 0.4279 | - |
0.4159 | 24000 | 0.4299 | - |
0.4246 | 24500 | 0.4289 | - |
0.4332 | 25000 | 0.416 | - |
0.4419 | 25500 | 0.3997 | - |
0.4506 | 26000 | 0.409 | - |
0.4592 | 26500 | 0.4133 | - |
0.4679 | 27000 | 0.4016 | - |
0.4766 | 27500 | 0.4117 | - |
0.4852 | 28000 | 0.4155 | - |
0.4939 | 28500 | 0.4117 | - |
0.5026 | 29000 | 0.4039 | - |
0.5112 | 29500 | 0.4087 | - |
0.5199 | 30000 | 0.4119 | - |
0.5286 | 30500 | 0.3948 | - |
0.5372 | 31000 | 0.4013 | - |
0.5459 | 31500 | 0.4175 | - |
0.5546 | 32000 | 0.4038 | - |
0.5632 | 32500 | 0.4058 | - |
0.5719 | 33000 | 0.4099 | - |
0.5805 | 33500 | 0.4117 | - |
0.5892 | 34000 | 0.4142 | - |
0.5979 | 34500 | 0.4049 | - |
0.6065 | 35000 | 0.4099 | - |
0.6152 | 35500 | 0.4121 | - |
0.6239 | 36000 | 0.4167 | - |
0.6325 | 36500 | 0.4138 | - |
0.6412 | 37000 | 0.4125 | - |
0.6499 | 37500 | 0.4043 | - |
0.6585 | 38000 | 0.4129 | - |
0.6672 | 38500 | 0.4079 | - |
0.6759 | 39000 | 0.3954 | - |
0.6845 | 39500 | 0.413 | - |
0.6932 | 40000 | 0.4079 | - |
0.7019 | 40500 | 0.4067 | - |
0.7105 | 41000 | 0.4251 | - |
0.7192 | 41500 | 0.4044 | - |
0.7279 | 42000 | 0.3919 | - |
0.7365 | 42500 | 0.4081 | - |
0.7452 | 43000 | 0.4141 | - |
0.7538 | 43500 | 0.4015 | - |
0.7625 | 44000 | 0.4139 | - |
0.7712 | 44500 | 0.408 | - |
0.7798 | 45000 | 0.4019 | - |
0.7885 | 45500 | 0.4127 | - |
0.7972 | 46000 | 0.4109 | - |
0.8058 | 46500 | 0.4045 | - |
0.8145 | 47000 | 0.4017 | - |
0.8232 | 47500 | 0.4108 | - |
0.8318 | 48000 | 0.4189 | - |
0.8405 | 48500 | 0.4127 | - |
0.8492 | 49000 | 0.4183 | - |
0.8578 | 49500 | 0.408 | - |
0.8665 | 50000 | 0.4091 | - |
0.8752 | 50500 | 0.412 | - |
0.8838 | 51000 | 0.4129 | - |
0.8925 | 51500 | 0.4175 | - |
0.9012 | 52000 | 0.4049 | - |
0.9098 | 52500 | 0.4047 | - |
0.9185 | 53000 | 0.4016 | - |
0.9271 | 53500 | 0.4088 | - |
0.9358 | 54000 | 0.4009 | - |
0.9445 | 54500 | 0.3996 | - |
0.9531 | 55000 | 0.4054 | - |
0.9618 | 55500 | 0.4115 | - |
0.9705 | 56000 | 0.4135 | - |
0.9791 | 56500 | 0.4041 | - |
0.9878 | 57000 | 0.4046 | - |
0.9965 | 57500 | 0.4063 | - |
1.0 | 57704 | - | 0.4615 |
1.0051 | 58000 | 0.4054 | - |
1.0138 | 58500 | 0.4017 | - |
1.0225 | 59000 | 0.417 | - |
1.0311 | 59500 | 0.4048 | - |
1.0398 | 60000 | 0.4007 | - |
1.0485 | 60500 | 0.4094 | - |
1.0571 | 61000 | 0.4068 | - |
1.0658 | 61500 | 0.4113 | - |
1.0744 | 62000 | 0.4022 | - |
1.0831 | 62500 | 0.4219 | - |
1.0918 | 63000 | 0.4149 | - |
1.1004 | 63500 | 0.399 | - |
1.1091 | 64000 | 0.4041 | - |
1.1178 | 64500 | 0.4023 | - |
1.1264 | 65000 | 0.4039 | - |
1.1351 | 65500 | 0.4024 | - |
1.1438 | 66000 | 0.4184 | - |
1.1524 | 66500 | 0.4104 | - |
1.1611 | 67000 | 0.4032 | - |
1.1698 | 67500 | 0.3958 | - |
1.1784 | 68000 | 0.4103 | - |
1.1871 | 68500 | 0.4105 | - |
1.1958 | 69000 | 0.4049 | - |
1.2044 | 69500 | 0.3995 | - |
1.2131 | 70000 | 0.4064 | - |
1.2218 | 70500 | 0.4135 | - |
1.2304 | 71000 | 0.3907 | - |
1.2391 | 71500 | 0.4037 | - |
1.2477 | 72000 | 0.4016 | - |
1.2564 | 72500 | 0.4124 | - |
1.2651 | 73000 | 0.4071 | - |
1.2737 | 73500 | 0.3965 | - |
1.2824 | 74000 | 0.4149 | - |
1.2911 | 74500 | 0.3985 | - |
1.2997 | 75000 | 0.3957 | - |
1.3084 | 75500 | 0.4043 | - |
1.3171 | 76000 | 0.411 | - |
1.3257 | 76500 | 0.4109 | - |
1.3344 | 77000 | 0.3968 | - |
1.3431 | 77500 | 0.4134 | - |
1.3517 | 78000 | 0.4057 | - |
1.3604 | 78500 | 0.4034 | - |
1.3691 | 79000 | 0.4057 | - |
1.3777 | 79500 | 0.3998 | - |
1.3864 | 80000 | 0.4002 | - |
1.3951 | 80500 | 0.396 | - |
1.4037 | 81000 | 0.4066 | - |
1.4124 | 81500 | 0.4073 | - |
1.4210 | 82000 | 0.3957 | - |
1.4297 | 82500 | 0.4012 | - |
1.4384 | 83000 | 0.4008 | - |
1.4470 | 83500 | 0.4055 | - |
1.4557 | 84000 | 0.409 | - |
1.4644 | 84500 | 0.4052 | - |
1.4730 | 85000 | 0.4128 | - |
1.4817 | 85500 | 0.4053 | - |
1.4904 | 86000 | 0.3979 | - |
1.4990 | 86500 | 0.4038 | - |
1.5077 | 87000 | 0.3987 | - |
1.5164 | 87500 | 0.4071 | - |
1.5250 | 88000 | 0.4042 | - |
1.5337 | 88500 | 0.4097 | - |
1.5424 | 89000 | 0.4044 | - |
1.5510 | 89500 | 0.4037 | - |
1.5597 | 90000 | 0.3992 | - |
1.5683 | 90500 | 0.4031 | - |
1.5770 | 91000 | 0.4037 | - |
1.5857 | 91500 | 0.4001 | - |
1.5943 | 92000 | 0.4069 | - |
1.6030 | 92500 | 0.4149 | - |
1.6117 | 93000 | 0.4091 | - |
1.6203 | 93500 | 0.3978 | - |
1.6290 | 94000 | 0.397 | - |
1.6377 | 94500 | 0.4063 | - |
1.6463 | 95000 | 0.4032 | - |
1.6550 | 95500 | 0.4146 | - |
1.6637 | 96000 | 0.407 | - |
1.6723 | 96500 | 0.4079 | - |
1.6810 | 97000 | 0.3991 | - |
1.6897 | 97500 | 0.4072 | - |
1.6983 | 98000 | 0.397 | - |
1.7070 | 98500 | 0.4033 | - |
1.7157 | 99000 | 0.412 | - |
1.7243 | 99500 | 0.3886 | - |
1.7330 | 100000 | 0.4026 | - |
1.7416 | 100500 | 0.3993 | - |
1.7503 | 101000 | 0.4078 | - |
1.7590 | 101500 | 0.3945 | - |
1.7676 | 102000 | 0.4029 | - |
1.7763 | 102500 | 0.4048 | - |
1.7850 | 103000 | 0.3994 | - |
1.7936 | 103500 | 0.4079 | - |
1.8023 | 104000 | 0.4146 | - |
1.8110 | 104500 | 0.4014 | - |
1.8196 | 105000 | 0.3942 | - |
1.8283 | 105500 | 0.4081 | - |
1.8370 | 106000 | 0.4016 | - |
1.8456 | 106500 | 0.4122 | - |
1.8543 | 107000 | 0.4078 | - |
1.8630 | 107500 | 0.4146 | - |
1.8716 | 108000 | 0.4029 | - |
1.8803 | 108500 | 0.4057 | - |
1.8890 | 109000 | 0.3994 | - |
1.8976 | 109500 | 0.3955 | - |
1.9063 | 110000 | 0.3997 | - |
1.9149 | 110500 | 0.3935 | - |
1.9236 | 111000 | 0.3942 | - |
1.9323 | 111500 | 0.3979 | - |
1.9409 | 112000 | 0.3996 | - |
1.9496 | 112500 | 0.4076 | - |
1.9583 | 113000 | 0.3971 | - |
1.9669 | 113500 | 0.4075 | - |
1.9756 | 114000 | 0.4028 | - |
1.9843 | 114500 | 0.4011 | - |
1.9929 | 115000 | 0.3929 | - |
2.0 | 115408 | - | 0.4604 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.2.1
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ThuanPhong/sentence_CafeBERT
Base model
uitnlp/CafeBERTEvaluation results
- Cosine Accuracy on Unknownself-reported0.540
- Cosine Accuracy Threshold on Unknownself-reported1.000
- Cosine F1 on Unknownself-reported0.630
- Cosine F1 Threshold on Unknownself-reported1.000
- Cosine Precision on Unknownself-reported0.460
- Cosine Recall on Unknownself-reported1.000
- Cosine Ap on Unknownself-reported0.460
- Dot Accuracy on Unknownself-reported0.540
- Dot Accuracy Threshold on Unknownself-reported46.291
- Dot F1 on Unknownself-reported0.630