YAML Metadata
Error:
"model-index[0].results[0].metrics" is required
t5-qa_webnlg_synth-en
Model description
This model is a Data Question Answering model based on T5-small, that answers questions given a structured table as input. It is actually a component of QuestEval metric but can be used independently as it is, for QA only.
How to use
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en")
model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en")
You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):
text_input = "{QUESTION} </s> {CONTEXT}"
where CONTEXT
is a structured table that is linearised this way:
CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"
Training data
The model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.
Citation info
@article{rebuffel2021data,
title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation},
author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick},
journal={arXiv preprint arXiv:2104.07555},
year={2021}
}
- Downloads last month
- 127
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.