TheRamsay's picture
End of training
16ee4d9 verified
|
raw
history blame
6.26 kB
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-gpt2-enc-dec
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: cs
          split: train+validation
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.7337164750957854

wav2vec2-gpt2-enc-dec

This model is a fine-tuned version of on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3169
  • Wer: 0.7337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.08
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7683 0.2744 2000 0.7136 1.0624
0.6998 0.5488 4000 0.6563 1.1959
0.6798 0.8232 6000 0.6385 1.2165
0.6563 1.0975 8000 0.6162 1.1502
0.6385 1.3719 10000 0.6097 1.2121
0.6509 1.6463 12000 0.6009 1.1585
0.6365 1.9207 14000 0.5816 1.1171
0.6148 2.1951 16000 0.5811 1.1667
0.6081 2.4695 18000 0.5620 1.0605
0.6116 2.7439 20000 0.5596 1.1314
0.5875 3.0182 22000 0.5496 1.1081
0.5831 3.2926 24000 0.5347 1.0435
0.5798 3.5670 26000 0.5363 1.0736
0.6004 3.8414 28000 0.5234 1.0120
0.5525 4.1158 30000 0.5096 0.9784
0.5616 4.3902 32000 0.5074 0.9910
0.5623 4.6646 34000 0.5054 0.9849
0.549 4.9389 36000 0.5028 0.9962
0.5334 5.2133 38000 0.4876 0.9537
0.5482 5.4877 40000 0.4865 0.9414
0.5277 5.7621 42000 0.4886 0.9789
0.5126 6.0365 44000 0.4769 0.9494
0.5246 6.3109 46000 0.4690 0.9278
0.5255 6.5853 48000 0.4688 0.9455
0.5156 6.8597 50000 0.4597 0.9236
0.5135 7.1340 52000 0.4581 0.9245
0.5041 7.4084 54000 0.4488 0.9067
0.505 7.6828 56000 0.4456 0.9050
0.5151 7.9572 58000 0.4441 0.9053
0.4953 8.2316 60000 0.4374 0.8990
0.4815 8.5060 62000 0.4338 0.8987
0.506 8.7804 64000 0.4295 0.8897
0.4847 9.0547 66000 0.4273 0.8922
0.4763 9.3291 68000 0.4206 0.8782
0.4822 9.6035 70000 0.4180 0.8790
0.4728 9.8779 72000 0.4131 0.8673
0.4645 10.1523 74000 0.4086 0.8708
0.4696 10.4267 76000 0.4087 0.8741
0.4664 10.7011 78000 0.4020 0.8547
0.4677 10.9754 80000 0.3974 0.8503
0.4482 11.2498 82000 0.3907 0.8410
0.4518 11.5242 84000 0.3890 0.8451
0.4638 11.7986 86000 0.3855 0.8407
0.4325 12.0730 88000 0.3825 0.8328
0.4421 12.3474 90000 0.3742 0.8134
0.4366 12.6218 92000 0.3751 0.8303
0.4412 12.8961 94000 0.3671 0.8120
0.4297 13.1705 96000 0.3639 0.8035
0.4267 13.4449 98000 0.3651 0.8131
0.437 13.7193 100000 0.3575 0.7947
0.4373 13.9937 102000 0.3561 0.8010
0.4182 14.2681 104000 0.3514 0.7860
0.4141 14.5425 106000 0.3490 0.7874
0.4117 14.8168 108000 0.3466 0.7833
0.4116 15.0912 110000 0.3446 0.7753
0.4074 15.3656 112000 0.3411 0.7696
0.4086 15.6400 114000 0.3394 0.7770
0.4189 15.9144 116000 0.3358 0.7666
0.3972 16.1888 118000 0.3332 0.7608
0.3911 16.4632 120000 0.3328 0.7603
0.4062 16.7375 122000 0.3296 0.7496
0.4 17.0119 124000 0.3279 0.7537
0.388 17.2863 126000 0.3262 0.7469
0.3929 17.5607 128000 0.3251 0.7471
0.4036 17.8351 130000 0.3237 0.7455
0.392 18.1095 132000 0.3217 0.7417
0.3916 18.3839 134000 0.3207 0.7406
0.3934 18.6583 136000 0.3190 0.7375
0.3805 18.9326 138000 0.3188 0.7384
0.3778 19.2070 140000 0.3178 0.7365
0.3795 19.4814 142000 0.3173 0.7337
0.3841 19.7558 144000 0.3169 0.7337

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0