wizardLM-7B-GGML / README.md
TheBloke's picture
New GGMLv3 format for breaking llama.cpp change May 19th commit 2d5db48
29c4ce5
|
raw
history blame
3.32 kB
metadata
license: other
inference: false

WizardLM: An Instruction-following LLM Using Evol-Instruct

These files are the result of merging the delta weights with the original Llama7B model.

The code for merging is provided in the WizardLM official Github repo.

WizardLM-7B GGML

This repo contains GGML files for for CPU inference using llama.cpp.

Other repositories available

THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!

llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508

I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit 2d5db48 or later) to use them.

For files compatible with the previous version of llama.cpp, please see branch previous_llama_ggmlv2.

Provided files

Name Quant method Bits Size RAM required Use case
WizardLM-7B.GGML.q4_0.bin q4_0 4bit 4.2GB 6GB 4bit.
WizardLM-7B.GGML.q4_1.bin q4_0 4bit 4.63GB 6GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
WizardLM-7B.GGML.q5_0.bin q5_0 5bit 4.63GB 7GB 5-bit. Higher accuracy, higher resource usage and slower inference.
WizardLM-7B.GGML.q5_1.bin q5_1 5bit 5.0GB 7GB 5-bit. Even higher accuracy, and higher resource usage and slower inference.
WizardLM-7B.GGML.q8_0.bin q8_0 8bit 8GB 10GB 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 18 -m WizardLM-7B.GGML.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Write a story about llamas
### Response:"

Change -t 18 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files.

Original model info

Overview of Evol-Instruct Evol-Instruct is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.

info info