metadata
tags:
- generated_from_trainer
model-index:
- name: t5-small-p-l-akk-en-20240809-220318
results: []
t5-small-p-l-akk-en-20240809-220318
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1791
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 250
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1938 | 1.3270 | 2500 | 0.2014 |
0.1921 | 2.6539 | 5000 | 0.2010 |
0.1884 | 3.9809 | 7500 | 0.1993 |
0.1919 | 5.3079 | 10000 | 0.1985 |
0.1849 | 6.6348 | 12500 | 0.1981 |
0.1907 | 7.9618 | 15000 | 0.1969 |
0.1869 | 9.2887 | 17500 | 0.1970 |
0.1872 | 10.6157 | 20000 | 0.1969 |
0.183 | 11.9427 | 22500 | 0.1963 |
0.183 | 13.2696 | 25000 | 0.1957 |
0.1872 | 14.5966 | 27500 | 0.1946 |
0.1802 | 15.9236 | 30000 | 0.1931 |
0.1823 | 17.2505 | 32500 | 0.1932 |
0.1791 | 18.5775 | 35000 | 0.1927 |
0.1798 | 19.9045 | 37500 | 0.1924 |
0.1803 | 21.2314 | 40000 | 0.1916 |
0.179 | 22.5584 | 42500 | 0.1912 |
0.1794 | 23.8854 | 45000 | 0.1905 |
0.1783 | 25.2123 | 47500 | 0.1904 |
0.1741 | 26.5393 | 50000 | 0.1900 |
0.1712 | 27.8662 | 52500 | 0.1900 |
0.1747 | 29.1932 | 55000 | 0.1901 |
0.1705 | 30.5202 | 57500 | 0.1892 |
0.1719 | 31.8471 | 60000 | 0.1889 |
0.1716 | 33.1741 | 62500 | 0.1891 |
0.1681 | 34.5011 | 65000 | 0.1890 |
0.1694 | 35.8280 | 67500 | 0.1875 |
0.1677 | 37.1550 | 70000 | 0.1878 |
0.169 | 38.4820 | 72500 | 0.1861 |
0.17 | 39.8089 | 75000 | 0.1863 |
0.1662 | 41.1359 | 77500 | 0.1858 |
0.163 | 42.4628 | 80000 | 0.1862 |
0.1637 | 43.7898 | 82500 | 0.1859 |
0.1647 | 45.1168 | 85000 | 0.1854 |
0.1609 | 46.4437 | 87500 | 0.1856 |
0.1678 | 47.7707 | 90000 | 0.1846 |
0.1595 | 49.0977 | 92500 | 0.1849 |
0.1605 | 50.4246 | 95000 | 0.1849 |
0.1609 | 51.7516 | 97500 | 0.1843 |
0.1635 | 53.0786 | 100000 | 0.1847 |
0.1583 | 54.4055 | 102500 | 0.1836 |
0.1564 | 55.7325 | 105000 | 0.1836 |
0.1606 | 57.0594 | 107500 | 0.1834 |
0.1555 | 58.3864 | 110000 | 0.1833 |
0.1572 | 59.7134 | 112500 | 0.1826 |
0.1601 | 61.0403 | 115000 | 0.1838 |
0.1567 | 62.3673 | 117500 | 0.1832 |
0.1551 | 63.6943 | 120000 | 0.1815 |
0.1558 | 65.0212 | 122500 | 0.1825 |
0.1531 | 66.3482 | 125000 | 0.1819 |
0.155 | 67.6752 | 127500 | 0.1823 |
0.1562 | 69.0021 | 130000 | 0.1815 |
0.1536 | 70.3291 | 132500 | 0.1820 |
0.1501 | 71.6561 | 135000 | 0.1819 |
0.1532 | 72.9830 | 137500 | 0.1813 |
0.1501 | 74.3100 | 140000 | 0.1816 |
0.1507 | 75.6369 | 142500 | 0.1809 |
0.1501 | 76.9639 | 145000 | 0.1812 |
0.1474 | 78.2909 | 147500 | 0.1802 |
0.1462 | 79.6178 | 150000 | 0.1819 |
0.1464 | 80.9448 | 152500 | 0.1807 |
0.1465 | 82.2718 | 155000 | 0.1802 |
0.1478 | 83.5987 | 157500 | 0.1810 |
0.1451 | 84.9257 | 160000 | 0.1794 |
0.144 | 86.2527 | 162500 | 0.1816 |
0.144 | 87.5796 | 165000 | 0.1803 |
0.1453 | 88.9066 | 167500 | 0.1795 |
0.1429 | 90.2335 | 170000 | 0.1792 |
0.1438 | 91.5605 | 172500 | 0.1804 |
0.1452 | 92.8875 | 175000 | 0.1790 |
0.1453 | 94.2144 | 177500 | 0.1791 |
0.1406 | 95.5414 | 180000 | 0.1799 |
0.1391 | 96.8684 | 182500 | 0.1792 |
0.144 | 98.1953 | 185000 | 0.1793 |
0.144 | 99.5223 | 187500 | 0.1787 |
0.1385 | 100.8493 | 190000 | 0.1784 |
0.1406 | 102.1762 | 192500 | 0.1787 |
0.142 | 103.5032 | 195000 | 0.1800 |
0.1394 | 104.8301 | 197500 | 0.1787 |
0.1391 | 106.1571 | 200000 | 0.1789 |
0.1357 | 107.4841 | 202500 | 0.1797 |
0.1384 | 108.8110 | 205000 | 0.1785 |
0.1408 | 110.1380 | 207500 | 0.1792 |
0.1366 | 111.4650 | 210000 | 0.1800 |
0.1375 | 112.7919 | 212500 | 0.1792 |
0.1383 | 114.1189 | 215000 | 0.1790 |
0.1351 | 115.4459 | 217500 | 0.1788 |
0.1382 | 116.7728 | 220000 | 0.1784 |
0.1341 | 118.0998 | 222500 | 0.1791 |
0.1385 | 119.4268 | 225000 | 0.1788 |
0.1353 | 120.7537 | 227500 | 0.1783 |
0.1362 | 122.0807 | 230000 | 0.1783 |
0.1343 | 123.4076 | 232500 | 0.1783 |
0.1419 | 124.7346 | 235000 | 0.1786 |
0.1332 | 126.0616 | 237500 | 0.1787 |
0.1333 | 127.3885 | 240000 | 0.1785 |
0.1336 | 128.7155 | 242500 | 0.1782 |
0.132 | 130.0425 | 245000 | 0.1783 |
0.1299 | 131.3694 | 247500 | 0.1776 |
0.1313 | 132.6964 | 250000 | 0.1790 |
0.1302 | 134.0234 | 252500 | 0.1775 |
0.1301 | 135.3503 | 255000 | 0.1786 |
0.1337 | 136.6773 | 257500 | 0.1785 |
0.1302 | 138.0042 | 260000 | 0.1791 |
0.1288 | 139.3312 | 262500 | 0.1789 |
0.1321 | 140.6582 | 265000 | 0.1785 |
0.1299 | 141.9851 | 267500 | 0.1779 |
0.129 | 143.3121 | 270000 | 0.1791 |
0.13 | 144.6391 | 272500 | 0.1780 |
0.133 | 145.9660 | 275000 | 0.1786 |
0.1295 | 147.2930 | 277500 | 0.1781 |
0.1283 | 148.6200 | 280000 | 0.1780 |
0.127 | 149.9469 | 282500 | 0.1778 |
0.1246 | 151.2739 | 285000 | 0.1785 |
0.1293 | 152.6008 | 287500 | 0.1783 |
0.1259 | 153.9278 | 290000 | 0.1781 |
0.129 | 155.2548 | 292500 | 0.1777 |
0.126 | 156.5817 | 295000 | 0.1778 |
0.1275 | 157.9087 | 297500 | 0.1777 |
0.1259 | 159.2357 | 300000 | 0.1784 |
0.1273 | 160.5626 | 302500 | 0.1774 |
0.1272 | 161.8896 | 305000 | 0.1786 |
0.1243 | 163.2166 | 307500 | 0.1787 |
0.1245 | 164.5435 | 310000 | 0.1784 |
0.1259 | 165.8705 | 312500 | 0.1785 |
0.1262 | 167.1975 | 315000 | 0.1779 |
0.1242 | 168.5244 | 317500 | 0.1783 |
0.1241 | 169.8514 | 320000 | 0.1779 |
0.1293 | 171.1783 | 322500 | 0.1792 |
0.1247 | 172.5053 | 325000 | 0.1777 |
0.1266 | 173.8323 | 327500 | 0.1790 |
0.1232 | 175.1592 | 330000 | 0.1787 |
0.1239 | 176.4862 | 332500 | 0.1788 |
0.1248 | 177.8132 | 335000 | 0.1789 |
0.1242 | 179.1401 | 337500 | 0.1787 |
0.1236 | 180.4671 | 340000 | 0.1786 |
0.1259 | 181.7941 | 342500 | 0.1787 |
0.1206 | 183.1210 | 345000 | 0.1779 |
0.1226 | 184.4480 | 347500 | 0.1778 |
0.1231 | 185.7749 | 350000 | 0.1782 |
0.1201 | 187.1019 | 352500 | 0.1789 |
0.121 | 188.4289 | 355000 | 0.1791 |
0.1223 | 189.7558 | 357500 | 0.1792 |
0.1227 | 191.0828 | 360000 | 0.1779 |
0.121 | 192.4098 | 362500 | 0.1783 |
0.1211 | 193.7367 | 365000 | 0.1790 |
0.1249 | 195.0637 | 367500 | 0.1787 |
0.1216 | 196.3907 | 370000 | 0.1781 |
0.1224 | 197.7176 | 372500 | 0.1785 |
0.1208 | 199.0446 | 375000 | 0.1794 |
0.1203 | 200.3715 | 377500 | 0.1787 |
0.1179 | 201.6985 | 380000 | 0.1786 |
0.1214 | 203.0255 | 382500 | 0.1785 |
0.1204 | 204.3524 | 385000 | 0.1790 |
0.118 | 205.6794 | 387500 | 0.1782 |
0.1224 | 207.0064 | 390000 | 0.1793 |
0.1225 | 208.3333 | 392500 | 0.1788 |
0.121 | 209.6603 | 395000 | 0.1790 |
0.1187 | 210.9873 | 397500 | 0.1788 |
0.1225 | 212.3142 | 400000 | 0.1787 |
0.119 | 213.6412 | 402500 | 0.1786 |
0.1179 | 214.9682 | 405000 | 0.1793 |
0.1212 | 216.2951 | 407500 | 0.1790 |
0.12 | 217.6221 | 410000 | 0.1791 |
0.1204 | 218.9490 | 412500 | 0.1788 |
0.1202 | 220.2760 | 415000 | 0.1786 |
0.1224 | 221.6030 | 417500 | 0.1794 |
0.1175 | 222.9299 | 420000 | 0.1785 |
0.1188 | 224.2569 | 422500 | 0.1783 |
0.118 | 225.5839 | 425000 | 0.1789 |
0.1197 | 226.9108 | 427500 | 0.1789 |
0.1181 | 228.2378 | 430000 | 0.1786 |
0.1195 | 229.5648 | 432500 | 0.1792 |
0.1206 | 230.8917 | 435000 | 0.1790 |
0.1174 | 232.2187 | 437500 | 0.1793 |
0.1189 | 233.5456 | 440000 | 0.1787 |
0.1183 | 234.8726 | 442500 | 0.1787 |
0.1193 | 236.1996 | 445000 | 0.1790 |
0.1171 | 237.5265 | 447500 | 0.1788 |
0.1179 | 238.8535 | 450000 | 0.1789 |
0.1202 | 240.1805 | 452500 | 0.1789 |
0.1206 | 241.5074 | 455000 | 0.1786 |
0.1183 | 242.8344 | 457500 | 0.1789 |
0.1183 | 244.1614 | 460000 | 0.1790 |
0.1181 | 245.4883 | 462500 | 0.1791 |
0.1205 | 246.8153 | 465000 | 0.1790 |
0.1208 | 248.1423 | 467500 | 0.1791 |
0.1175 | 249.4692 | 470000 | 0.1791 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1