Edit model card

A model for translating cuneiform to english using google t5-small.

Akkadian: π’„Ώ π’ˆΎ π’Œ— π’ƒΆ π’Œ“ 𒐉 π’†š π’€€ π’ˆΎ 𒆳 π’†Έ π’„­ 𒇻 𒁺 π’…… 𒆳 𒁀 π’€€ 𒍝 𒆳 π’Š“ π’…ˆ 𒁀 π’‡· π’€€ 𒆳 𒁲 𒁺 π’€€ π’†· π’€€ 𒁲 π’Œ· π’ˆ¨ π’Œ π’‰Œ 𒃻 π’…† 𒁲 π’€€ 𒇉 π’Š’ π’Œ‘ π’Š’ π’Š­ 𒆳 π’ˆ¨ π’„΄ π’Š‘ 𒀝 π’‹€ π’Š© π’†· π’‹’ 𒉑 𒃻 π’‹— π’ˆ¨ π’Œ π’‹— 𒉑 π’Œ‘ π’ŠΊ 𒍝 π’€€ π’€€ π’ˆΎ π’Œ· π’…€ π’€Έ π’‹© π’Œ’ π’†·' English: 'in the month kislimu the fourth day i marched to the land habhu i conquered the lands bazu sarbaliu and didualu together with the cities on the banks of the river ruru of the land mehru i brought forth their booty and possessions and brought them to my city assur' Prediction: 'in the mo nth tammuz iv i conquered the land s que and que i conquered the land s que and bi t yakin i conquered the cities f ro m the river i conquered and plundered the cities on the bo rd er of the land elam'

t5-small-p-l-akk-en-20240727-131059

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0397
  • Bleu (max_length: 500): 23.8943
  • Bleu (max_length: 100): 34.2329

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.0533 0.1657 2500 0.0495
0.0469 0.3314 5000 0.0493
0.0516 0.4971 7500 0.0491
0.0495 0.6629 10000 0.0490
0.0531 0.8286 12500 0.0488
0.056 0.9943 15000 0.0487
0.0528 1.1600 17500 0.0486
0.0515 1.3257 20000 0.0484
0.0569 1.4914 22500 0.0483
0.0487 1.6572 25000 0.0481
0.0492 1.8229 27500 0.0481
0.0477 1.9886 30000 0.0478
0.0514 2.1543 32500 0.0478
0.0499 2.3200 35000 0.0477
0.0524 2.4857 37500 0.0477
0.0493 2.6515 40000 0.0475
0.0534 2.8172 42500 0.0474
0.053 2.9829 45000 0.0471
0.0497 3.1486 47500 0.0472
0.0451 3.3143 50000 0.0471
0.0533 3.4800 52500 0.0469
0.0476 3.6458 55000 0.0469
0.0499 3.8115 57500 0.0467
0.0524 3.9772 60000 0.0467
0.0471 4.1429 62500 0.0466
0.0495 4.3086 65000 0.0465
0.0489 4.4743 67500 0.0464
0.0462 4.6401 70000 0.0462
0.0487 4.8058 72500 0.0463
0.0506 4.9715 75000 0.0461
0.0467 5.1372 77500 0.0459
0.0448 5.3029 80000 0.0462
0.0472 5.4686 82500 0.0461
0.0522 5.6344 85000 0.0459
0.0498 5.8001 87500 0.0457
0.0512 5.9658 90000 0.0456
0.0474 6.1315 92500 0.0455
0.0517 6.2972 95000 0.0454
0.0465 6.4629 97500 0.0455
0.0468 6.6287 100000 0.0453
0.0486 6.7944 102500 0.0453
0.0469 6.9601 105000 0.0451
0.0468 7.1258 107500 0.0451
0.0486 7.2915 110000 0.0449
0.0473 7.4572 112500 0.0449
0.0487 7.6230 115000 0.0449
0.0487 7.7887 117500 0.0448
0.05 7.9544 120000 0.0447
0.049 8.1201 122500 0.0447
0.0428 8.2858 125000 0.0446
0.047 8.4515 127500 0.0445
0.0447 8.6173 130000 0.0443
0.0455 8.7830 132500 0.0443
0.0464 8.9487 135000 0.0443
0.0432 9.1144 137500 0.0444
0.0463 9.2801 140000 0.0442
0.0431 9.4458 142500 0.0442
0.0448 9.6116 145000 0.0441
0.0457 9.7773 147500 0.0440
0.0478 9.9430 150000 0.0439
0.0484 10.1087 152500 0.0441
0.0418 10.2744 155000 0.0439
0.0404 10.4401 157500 0.0437
0.0449 10.6059 160000 0.0436
0.0453 10.7716 162500 0.0438
0.0441 10.9373 165000 0.0435
0.0447 11.1030 167500 0.0437
0.0455 11.2687 170000 0.0436
0.043 11.4344 172500 0.0436
0.0429 11.6002 175000 0.0435
0.0434 11.7659 177500 0.0434
0.0452 11.9316 180000 0.0433
0.0423 12.0973 182500 0.0435
0.0482 12.2630 185000 0.0433
0.0439 12.4287 187500 0.0433
0.0408 12.5945 190000 0.0432
0.0458 12.7602 192500 0.0430
0.0429 12.9259 195000 0.0431
0.0403 13.0916 197500 0.0430
0.0451 13.2573 200000 0.0429
0.0453 13.4230 202500 0.0429
0.0437 13.5888 205000 0.0427
0.0433 13.7545 207500 0.0428
0.0462 13.9202 210000 0.0426
0.0447 14.0859 212500 0.0427
0.0454 14.2516 215000 0.0427
0.0413 14.4173 217500 0.0426
0.0416 14.5831 220000 0.0426
0.0444 14.7488 222500 0.0425
0.0465 14.9145 225000 0.0424
0.0423 15.0802 227500 0.0425
0.0473 15.2459 230000 0.0424
0.0408 15.4116 232500 0.0424
0.0442 15.5774 235000 0.0424
0.0415 15.7431 237500 0.0422
0.042 15.9088 240000 0.0421
0.0414 16.0745 242500 0.0422
0.0444 16.2402 245000 0.0421
0.0435 16.4059 247500 0.0421
0.0393 16.5717 250000 0.0420
0.0436 16.7374 252500 0.0421
0.0442 16.9031 255000 0.0419
0.0461 17.0688 257500 0.0420
0.0403 17.2345 260000 0.0420
0.044 17.4002 262500 0.0420
0.0406 17.5660 265000 0.0419
0.0422 17.7317 267500 0.0418
0.0424 17.8974 270000 0.0416
0.0415 18.0631 272500 0.0418
0.0407 18.2288 275000 0.0416
0.0401 18.3945 277500 0.0418
0.0449 18.5603 280000 0.0418
0.0405 18.7260 282500 0.0415
0.0385 18.8917 285000 0.0418
0.0405 19.0574 287500 0.0415
0.0445 19.2231 290000 0.0417
0.0429 19.3888 292500 0.0414
0.0429 19.5546 295000 0.0413
0.0464 19.7203 297500 0.0414
0.0424 19.8860 300000 0.0413
0.0417 20.0517 302500 0.0414
0.0418 20.2174 305000 0.0413
0.0406 20.3831 307500 0.0414
0.0419 20.5489 310000 0.0413
0.039 20.7146 312500 0.0413
0.0392 20.8803 315000 0.0411
0.0418 21.0460 317500 0.0411
0.0363 21.2117 320000 0.0411
0.0424 21.3774 322500 0.0412
0.0402 21.5432 325000 0.0413
0.0418 21.7089 327500 0.0413
0.0412 21.8746 330000 0.0410
0.0413 22.0403 332500 0.0410
0.0413 22.2060 335000 0.0411
0.0418 22.3717 337500 0.0411
0.0424 22.5375 340000 0.0411
0.0386 22.7032 342500 0.0410
0.0399 22.8689 345000 0.0408
0.0429 23.0346 347500 0.0409
0.0384 23.2003 350000 0.0409
0.0408 23.3660 352500 0.0408
0.0405 23.5318 355000 0.0407
0.042 23.6975 357500 0.0408
0.0404 23.8632 360000 0.0407
0.0382 24.0289 362500 0.0406
0.0393 24.1946 365000 0.0408
0.0359 24.3603 367500 0.0407
0.0412 24.5261 370000 0.0408
0.0446 24.6918 372500 0.0406
0.0377 24.8575 375000 0.0406
0.0379 25.0232 377500 0.0407
0.0389 25.1889 380000 0.0407
0.0365 25.3546 382500 0.0405
0.0441 25.5203 385000 0.0405
0.0427 25.6861 387500 0.0405
0.0393 25.8518 390000 0.0405
0.0392 26.0175 392500 0.0406
0.039 26.1832 395000 0.0405
0.0401 26.3489 397500 0.0405
0.0385 26.5146 400000 0.0405
0.0413 26.6804 402500 0.0406
0.0384 26.8461 405000 0.0405
0.0388 27.0118 407500 0.0405
0.039 27.1775 410000 0.0405
0.0385 27.3432 412500 0.0404
0.0387 27.5089 415000 0.0404
0.0426 27.6747 417500 0.0403
0.0381 27.8404 420000 0.0403
0.0423 28.0061 422500 0.0405
0.0368 28.1718 425000 0.0403
0.0405 28.3375 427500 0.0403
0.0371 28.5032 430000 0.0405
0.0393 28.6690 432500 0.0403
0.0385 28.8347 435000 0.0403
0.0399 29.0004 437500 0.0402
0.0398 29.1661 440000 0.0403
0.0364 29.3318 442500 0.0402
0.0374 29.4975 445000 0.0402
0.0401 29.6633 447500 0.0401
0.0404 29.8290 450000 0.0402
0.0391 29.9947 452500 0.0401
0.0398 30.1604 455000 0.0401
0.0387 30.3261 457500 0.0403
0.0388 30.4918 460000 0.0402
0.0392 30.6576 462500 0.0400
0.037 30.8233 465000 0.0400
0.0415 30.9890 467500 0.0401
0.0407 31.1547 470000 0.0401
0.0414 31.3204 472500 0.0401
0.0401 31.4861 475000 0.0400
0.0382 31.6519 477500 0.0400
0.0412 31.8176 480000 0.0399
0.0368 31.9833 482500 0.0400
0.0384 32.1490 485000 0.0401
0.036 32.3147 487500 0.0399
0.0387 32.4804 490000 0.0400
0.0407 32.6462 492500 0.0399
0.0377 32.8119 495000 0.0400
0.0353 32.9776 497500 0.0399
0.0401 33.1433 500000 0.0400
0.0367 33.3090 502500 0.0399
0.0376 33.4747 505000 0.0399
0.0422 33.6405 507500 0.0398
0.0405 33.8062 510000 0.0398
0.0376 33.9719 512500 0.0398
0.041 34.1376 515000 0.0399
0.0372 34.3033 517500 0.0400
0.0391 34.4690 520000 0.0399
0.0399 34.6348 522500 0.0399
0.0369 34.8005 525000 0.0399
0.0409 34.9662 527500 0.0398
0.0398 35.1319 530000 0.0398
0.0379 35.2976 532500 0.0399
0.037 35.4633 535000 0.0399
0.0391 35.6291 537500 0.0398
0.0437 35.7948 540000 0.0399
0.0393 35.9605 542500 0.0397
0.0395 36.1262 545000 0.0398
0.0414 36.2919 547500 0.0399
0.0379 36.4576 550000 0.0398
0.0366 36.6234 552500 0.0398
0.0394 36.7891 555000 0.0398
0.0413 36.9548 557500 0.0398
0.0397 37.1205 560000 0.0398
0.0367 37.2862 562500 0.0397
0.0413 37.4519 565000 0.0397
0.0427 37.6177 567500 0.0398
0.0383 37.7834 570000 0.0397
0.036 37.9491 572500 0.0397
0.0389 38.1148 575000 0.0397
0.0395 38.2805 577500 0.0397
0.0391 38.4462 580000 0.0398
0.0388 38.6120 582500 0.0398
0.0412 38.7777 585000 0.0397
0.036 38.9434 587500 0.0398
0.0398 39.1091 590000 0.0398
0.0373 39.2748 592500 0.0397
0.0391 39.4405 595000 0.0397
0.0375 39.6063 597500 0.0398
0.0404 39.7720 600000 0.0398
0.0369 39.9377 602500 0.0397

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
69M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.