martinhillebrandtd's picture
Update README.md
06fbc92 verified
metadata
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
license: mit
model-index:
  - name: multilingual-e5-large
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 79.05970149253731
          - type: ap
            value: 43.486574390835635
          - type: f1
            value: 73.32700092140148
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB AmazonCounterfactualClassification (de)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 71.22055674518201
          - type: ap
            value: 81.55756710830498
          - type: f1
            value: 69.28271787752661
        task:
          type: Classification
      - dataset:
          config: en-ext
          name: MTEB AmazonCounterfactualClassification (en-ext)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 80.41979010494754
          - type: ap
            value: 29.34879922376344
          - type: f1
            value: 67.62475449011278
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB AmazonCounterfactualClassification (ja)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 77.8372591006424
          - type: ap
            value: 26.557560591210738
          - type: f1
            value: 64.96619417368707
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 93.489875
          - type: ap
            value: 90.98758636917603
          - type: f1
            value: 93.48554819717332
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 47.564
          - type: f1
            value: 46.75122173518047
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB AmazonReviewsClassification (de)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 45.400000000000006
          - type: f1
            value: 44.17195682400632
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB AmazonReviewsClassification (es)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 43.068
          - type: f1
            value: 42.38155696855596
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB AmazonReviewsClassification (fr)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 41.89
          - type: f1
            value: 40.84407321682663
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB AmazonReviewsClassification (ja)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 40.120000000000005
          - type: f1
            value: 39.522976223819114
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 38.832
          - type: f1
            value: 38.0392533394713
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: None
          split: test
          type: arguana
        metrics:
          - type: map_at_1
            value: 30.725
          - type: map_at_10
            value: 46.055
          - type: map_at_100
            value: 46.900999999999996
          - type: map_at_1000
            value: 46.911
          - type: map_at_3
            value: 41.548
          - type: map_at_5
            value: 44.297
          - type: mrr_at_1
            value: 31.152
          - type: mrr_at_10
            value: 46.231
          - type: mrr_at_100
            value: 47.07
          - type: mrr_at_1000
            value: 47.08
          - type: mrr_at_3
            value: 41.738
          - type: mrr_at_5
            value: 44.468999999999994
          - type: ndcg_at_1
            value: 30.725
          - type: ndcg_at_10
            value: 54.379999999999995
          - type: ndcg_at_100
            value: 58.138
          - type: ndcg_at_1000
            value: 58.389
          - type: ndcg_at_3
            value: 45.156
          - type: ndcg_at_5
            value: 50.123
          - type: precision_at_1
            value: 30.725
          - type: precision_at_10
            value: 8.087
          - type: precision_at_100
            value: 0.9769999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 18.54
          - type: precision_at_5
            value: 13.542000000000002
          - type: recall_at_1
            value: 30.725
          - type: recall_at_10
            value: 80.868
          - type: recall_at_100
            value: 97.653
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 55.619
          - type: recall_at_5
            value: 67.71000000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 44.30960650674069
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 38.427074197498996
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 60.28270056031872
          - type: mrr
            value: 74.38332673789738
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.05942144105269
          - type: cos_sim_spearman
            value: 82.51212105850809
          - type: euclidean_pearson
            value: 81.95639829909122
          - type: euclidean_spearman
            value: 82.3717564144213
          - type: manhattan_pearson
            value: 81.79273425468256
          - type: manhattan_spearman
            value: 82.20066817871039
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB BUCC (de-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 99.46764091858039
          - type: f1
            value: 99.37717466945023
          - type: precision
            value: 99.33194154488518
          - type: recall
            value: 99.46764091858039
        task:
          type: BitextMining
      - dataset:
          config: fr-en
          name: MTEB BUCC (fr-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 98.29407880255337
          - type: f1
            value: 98.11248073959938
          - type: precision
            value: 98.02443319392472
          - type: recall
            value: 98.29407880255337
        task:
          type: BitextMining
      - dataset:
          config: ru-en
          name: MTEB BUCC (ru-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 97.79009352268791
          - type: f1
            value: 97.5176076665512
          - type: precision
            value: 97.38136473848286
          - type: recall
            value: 97.79009352268791
        task:
          type: BitextMining
      - dataset:
          config: zh-en
          name: MTEB BUCC (zh-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: accuracy
            value: 99.26276987888363
          - type: f1
            value: 99.20133403545726
          - type: precision
            value: 99.17500438827453
          - type: recall
            value: 99.26276987888363
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 84.72727272727273
          - type: f1
            value: 84.67672206031433
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 35.34220182511161
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 33.4987096128766
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CQADupstackRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 25.558249999999997
          - type: map_at_10
            value: 34.44425000000001
          - type: map_at_100
            value: 35.59833333333333
          - type: map_at_1000
            value: 35.706916666666665
          - type: map_at_3
            value: 31.691749999999995
          - type: map_at_5
            value: 33.252916666666664
          - type: mrr_at_1
            value: 30.252666666666666
          - type: mrr_at_10
            value: 38.60675
          - type: mrr_at_100
            value: 39.42666666666666
          - type: mrr_at_1000
            value: 39.48408333333334
          - type: mrr_at_3
            value: 36.17441666666665
          - type: mrr_at_5
            value: 37.56275
          - type: ndcg_at_1
            value: 30.252666666666666
          - type: ndcg_at_10
            value: 39.683
          - type: ndcg_at_100
            value: 44.68541666666667
          - type: ndcg_at_1000
            value: 46.94316666666668
          - type: ndcg_at_3
            value: 34.961749999999995
          - type: ndcg_at_5
            value: 37.215666666666664
          - type: precision_at_1
            value: 30.252666666666666
          - type: precision_at_10
            value: 6.904166666666667
          - type: precision_at_100
            value: 1.0989999999999995
          - type: precision_at_1000
            value: 0.14733333333333334
          - type: precision_at_3
            value: 16.037666666666667
          - type: precision_at_5
            value: 11.413583333333333
          - type: recall_at_1
            value: 25.558249999999997
          - type: recall_at_10
            value: 51.13341666666666
          - type: recall_at_100
            value: 73.08366666666667
          - type: recall_at_1000
            value: 88.79483333333334
          - type: recall_at_3
            value: 37.989083333333326
          - type: recall_at_5
            value: 43.787833333333325
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: None
          split: test
          type: climate-fever
        metrics:
          - type: map_at_1
            value: 10.338
          - type: map_at_10
            value: 18.360000000000003
          - type: map_at_100
            value: 19.942
          - type: map_at_1000
            value: 20.134
          - type: map_at_3
            value: 15.174000000000001
          - type: map_at_5
            value: 16.830000000000002
          - type: mrr_at_1
            value: 23.257
          - type: mrr_at_10
            value: 33.768
          - type: mrr_at_100
            value: 34.707
          - type: mrr_at_1000
            value: 34.766000000000005
          - type: mrr_at_3
            value: 30.977
          - type: mrr_at_5
            value: 32.528
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 25.733
          - type: ndcg_at_100
            value: 32.288
          - type: ndcg_at_1000
            value: 35.992000000000004
          - type: ndcg_at_3
            value: 20.866
          - type: ndcg_at_5
            value: 22.612
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 8.124
          - type: precision_at_100
            value: 1.518
          - type: precision_at_1000
            value: 0.219
          - type: precision_at_3
            value: 15.679000000000002
          - type: precision_at_5
            value: 12.117
          - type: recall_at_1
            value: 10.338
          - type: recall_at_10
            value: 31.154
          - type: recall_at_100
            value: 54.161
          - type: recall_at_1000
            value: 75.21900000000001
          - type: recall_at_3
            value: 19.427
          - type: recall_at_5
            value: 24.214
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: None
          split: test
          type: dbpedia-entity
        metrics:
          - type: map_at_1
            value: 8.498
          - type: map_at_10
            value: 19.103
          - type: map_at_100
            value: 27.375
          - type: map_at_1000
            value: 28.981
          - type: map_at_3
            value: 13.764999999999999
          - type: map_at_5
            value: 15.950000000000001
          - type: mrr_at_1
            value: 65.5
          - type: mrr_at_10
            value: 74.53800000000001
          - type: mrr_at_100
            value: 74.71799999999999
          - type: mrr_at_1000
            value: 74.725
          - type: mrr_at_3
            value: 72.792
          - type: mrr_at_5
            value: 73.554
          - type: ndcg_at_1
            value: 53.37499999999999
          - type: ndcg_at_10
            value: 41.286
          - type: ndcg_at_100
            value: 45.972
          - type: ndcg_at_1000
            value: 53.123
          - type: ndcg_at_3
            value: 46.172999999999995
          - type: ndcg_at_5
            value: 43.033
          - type: precision_at_1
            value: 65.5
          - type: precision_at_10
            value: 32.725
          - type: precision_at_100
            value: 10.683
          - type: precision_at_1000
            value: 1.978
          - type: precision_at_3
            value: 50
          - type: precision_at_5
            value: 41.349999999999994
          - type: recall_at_1
            value: 8.498
          - type: recall_at_10
            value: 25.070999999999998
          - type: recall_at_100
            value: 52.383
          - type: recall_at_1000
            value: 74.91499999999999
          - type: recall_at_3
            value: 15.207999999999998
          - type: recall_at_5
            value: 18.563
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 46.5
          - type: f1
            value: 41.93833713984145
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: None
          split: test
          type: fever
        metrics:
          - type: map_at_1
            value: 67.914
          - type: map_at_10
            value: 78.10000000000001
          - type: map_at_100
            value: 78.333
          - type: map_at_1000
            value: 78.346
          - type: map_at_3
            value: 76.626
          - type: map_at_5
            value: 77.627
          - type: mrr_at_1
            value: 72.74199999999999
          - type: mrr_at_10
            value: 82.414
          - type: mrr_at_100
            value: 82.511
          - type: mrr_at_1000
            value: 82.513
          - type: mrr_at_3
            value: 81.231
          - type: mrr_at_5
            value: 82.065
          - type: ndcg_at_1
            value: 72.74199999999999
          - type: ndcg_at_10
            value: 82.806
          - type: ndcg_at_100
            value: 83.677
          - type: ndcg_at_1000
            value: 83.917
          - type: ndcg_at_3
            value: 80.305
          - type: ndcg_at_5
            value: 81.843
          - type: precision_at_1
            value: 72.74199999999999
          - type: precision_at_10
            value: 10.24
          - type: precision_at_100
            value: 1.089
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 31.268
          - type: precision_at_5
            value: 19.706000000000003
          - type: recall_at_1
            value: 67.914
          - type: recall_at_10
            value: 92.889
          - type: recall_at_100
            value: 96.42699999999999
          - type: recall_at_1000
            value: 97.92
          - type: recall_at_3
            value: 86.21
          - type: recall_at_5
            value: 90.036
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: None
          split: test
          type: fiqa
        metrics:
          - type: map_at_1
            value: 22.166
          - type: map_at_10
            value: 35.57
          - type: map_at_100
            value: 37.405
          - type: map_at_1000
            value: 37.564
          - type: map_at_3
            value: 30.379
          - type: map_at_5
            value: 33.324
          - type: mrr_at_1
            value: 43.519000000000005
          - type: mrr_at_10
            value: 51.556000000000004
          - type: mrr_at_100
            value: 52.344
          - type: mrr_at_1000
            value: 52.373999999999995
          - type: mrr_at_3
            value: 48.868
          - type: mrr_at_5
            value: 50.319
          - type: ndcg_at_1
            value: 43.519000000000005
          - type: ndcg_at_10
            value: 43.803
          - type: ndcg_at_100
            value: 50.468999999999994
          - type: ndcg_at_1000
            value: 53.111
          - type: ndcg_at_3
            value: 38.893
          - type: ndcg_at_5
            value: 40.653
          - type: precision_at_1
            value: 43.519000000000005
          - type: precision_at_10
            value: 12.253
          - type: precision_at_100
            value: 1.931
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 25.617
          - type: precision_at_5
            value: 19.383
          - type: recall_at_1
            value: 22.166
          - type: recall_at_10
            value: 51.6
          - type: recall_at_100
            value: 76.574
          - type: recall_at_1000
            value: 92.192
          - type: recall_at_3
            value: 34.477999999999994
          - type: recall_at_5
            value: 41.835
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: None
          split: test
          type: hotpotqa
        metrics:
          - type: map_at_1
            value: 39.041
          - type: map_at_10
            value: 62.961999999999996
          - type: map_at_100
            value: 63.79899999999999
          - type: map_at_1000
            value: 63.854
          - type: map_at_3
            value: 59.399
          - type: map_at_5
            value: 61.669
          - type: mrr_at_1
            value: 78.082
          - type: mrr_at_10
            value: 84.321
          - type: mrr_at_100
            value: 84.49600000000001
          - type: mrr_at_1000
            value: 84.502
          - type: mrr_at_3
            value: 83.421
          - type: mrr_at_5
            value: 83.977
          - type: ndcg_at_1
            value: 78.082
          - type: ndcg_at_10
            value: 71.229
          - type: ndcg_at_100
            value: 74.10900000000001
          - type: ndcg_at_1000
            value: 75.169
          - type: ndcg_at_3
            value: 66.28699999999999
          - type: ndcg_at_5
            value: 69.084
          - type: precision_at_1
            value: 78.082
          - type: precision_at_10
            value: 14.993
          - type: precision_at_100
            value: 1.7239999999999998
          - type: precision_at_1000
            value: 0.186
          - type: precision_at_3
            value: 42.737
          - type: precision_at_5
            value: 27.843
          - type: recall_at_1
            value: 39.041
          - type: recall_at_10
            value: 74.96300000000001
          - type: recall_at_100
            value: 86.199
          - type: recall_at_1000
            value: 93.228
          - type: recall_at_3
            value: 64.105
          - type: recall_at_5
            value: 69.608
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 90.23160000000001
          - type: ap
            value: 85.5674856808308
          - type: f1
            value: 90.18033354786317
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: None
          split: dev
          type: msmarco
        metrics:
          - type: map_at_1
            value: 24.091
          - type: map_at_10
            value: 36.753
          - type: map_at_100
            value: 37.913000000000004
          - type: map_at_1000
            value: 37.958999999999996
          - type: map_at_3
            value: 32.818999999999996
          - type: map_at_5
            value: 35.171
          - type: mrr_at_1
            value: 24.742
          - type: mrr_at_10
            value: 37.285000000000004
          - type: mrr_at_100
            value: 38.391999999999996
          - type: mrr_at_1000
            value: 38.431
          - type: mrr_at_3
            value: 33.440999999999995
          - type: mrr_at_5
            value: 35.75
          - type: ndcg_at_1
            value: 24.742
          - type: ndcg_at_10
            value: 43.698
          - type: ndcg_at_100
            value: 49.145
          - type: ndcg_at_1000
            value: 50.23800000000001
          - type: ndcg_at_3
            value: 35.769
          - type: ndcg_at_5
            value: 39.961999999999996
          - type: precision_at_1
            value: 24.742
          - type: precision_at_10
            value: 6.7989999999999995
          - type: precision_at_100
            value: 0.95
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 15.096000000000002
          - type: precision_at_5
            value: 11.183
          - type: recall_at_1
            value: 24.091
          - type: recall_at_10
            value: 65.068
          - type: recall_at_100
            value: 89.899
          - type: recall_at_1000
            value: 98.16
          - type: recall_at_3
            value: 43.68
          - type: recall_at_5
            value: 53.754999999999995
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 93.66621067031465
          - type: f1
            value: 93.49622853272142
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPDomainClassification (de)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 91.94702733164272
          - type: f1
            value: 91.17043441745282
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPDomainClassification (es)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 92.20146764509674
          - type: f1
            value: 91.98359080555608
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPDomainClassification (fr)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 88.99780770435328
          - type: f1
            value: 89.19746342724068
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPDomainClassification (hi)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 89.78486912871998
          - type: f1
            value: 89.24578823628642
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPDomainClassification (th)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 88.74502712477394
          - type: f1
            value: 89.00297573881542
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 77.9046967624259
          - type: f1
            value: 59.36787125785957
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPIntentClassification (de)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 74.5280360664976
          - type: f1
            value: 57.17723440888718
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPIntentClassification (es)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 75.44029352901934
          - type: f1
            value: 54.052855531072964
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPIntentClassification (fr)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 70.5606013153774
          - type: f1
            value: 52.62215934386531
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPIntentClassification (hi)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 73.11581211903908
          - type: f1
            value: 52.341291845645465
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPIntentClassification (th)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 74.28933092224233
          - type: f1
            value: 57.07918745504911
        task:
          type: Classification
      - dataset:
          config: af
          name: MTEB MassiveIntentClassification (af)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.38063214525892
          - type: f1
            value: 59.46463723443009
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveIntentClassification (am)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 56.06926698049766
          - type: f1
            value: 52.49084283283562
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveIntentClassification (ar)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.74983187626093
          - type: f1
            value: 56.960640620165904
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveIntentClassification (az)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.86550100874243
          - type: f1
            value: 62.47370548140688
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveIntentClassification (bn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.971082716879636
          - type: f1
            value: 61.03812421957381
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveIntentClassification (cy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 54.98318762609282
          - type: f1
            value: 51.51207916008392
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveIntentClassification (da)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.45527908540686
          - type: f1
            value: 66.16631905400318
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveIntentClassification (de)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.32750504371216
          - type: f1
            value: 66.16755288646591
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveIntentClassification (el)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.09213180901143
          - type: f1
            value: 66.95654394661507
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 73.75588433086752
          - type: f1
            value: 71.79973779656923
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveIntentClassification (es)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.49428379287154
          - type: f1
            value: 68.37494379215734
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveIntentClassification (fa)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.90921318090115
          - type: f1
            value: 66.79517376481645
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveIntentClassification (fi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.12104909213181
          - type: f1
            value: 67.29448842879584
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveIntentClassification (fr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.34095494283793
          - type: f1
            value: 67.01134288992947
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveIntentClassification (he)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.61264290517822
          - type: f1
            value: 64.68730512660757
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveIntentClassification (hi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.79757901815738
          - type: f1
            value: 65.24938539425598
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveIntentClassification (hu)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.68728984532616
          - type: f1
            value: 67.0487169762553
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveIntentClassification (hy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.07464694014795
          - type: f1
            value: 59.183532276789286
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveIntentClassification (id)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.04707464694015
          - type: f1
            value: 67.66829629003848
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveIntentClassification (is)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.42434431741762
          - type: f1
            value: 59.01617226544757
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveIntentClassification (it)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.53127101546738
          - type: f1
            value: 68.10033760906255
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveIntentClassification (ja)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 72.50504371217215
          - type: f1
            value: 69.74931103158923
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveIntentClassification (jv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 57.91190316072628
          - type: f1
            value: 54.05551136648796
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveIntentClassification (ka)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 51.78211163416275
          - type: f1
            value: 49.874888544058535
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveIntentClassification (km)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 47.017484868863484
          - type: f1
            value: 44.53364263352014
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveIntentClassification (kn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.16207128446537
          - type: f1
            value: 59.01185692320829
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveIntentClassification (ko)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.42501681237391
          - type: f1
            value: 67.13169450166086
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveIntentClassification (lv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.0780094149294
          - type: f1
            value: 64.41720167850707
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveIntentClassification (ml)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.57162071284466
          - type: f1
            value: 62.414138683804424
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveIntentClassification (mn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.71149966375252
          - type: f1
            value: 58.594805125087234
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveIntentClassification (ms)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.03900470746471
          - type: f1
            value: 63.87937257883887
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveIntentClassification (my)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.8776059179556
          - type: f1
            value: 57.48587618059131
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveIntentClassification (nb)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.87895090786819
          - type: f1
            value: 66.8141299430347
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveIntentClassification (nl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.45057162071285
          - type: f1
            value: 67.46444039673516
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveIntentClassification (pl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 71.546738399462
          - type: f1
            value: 68.63640876702655
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveIntentClassification (pt)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 70.72965702757229
          - type: f1
            value: 68.54119560379115
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveIntentClassification (ro)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.35574983187625
          - type: f1
            value: 65.88844917691927
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveIntentClassification (ru)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 71.70477471418964
          - type: f1
            value: 69.19665697061978
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveIntentClassification (sl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.0880968392737
          - type: f1
            value: 64.76962317666086
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveIntentClassification (sq)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.18493611297916
          - type: f1
            value: 62.49984559035371
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveIntentClassification (sv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 71.75857431069265
          - type: f1
            value: 69.20053687623418
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveIntentClassification (sw)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.500336247478145
          - type: f1
            value: 55.2972398687929
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveIntentClassification (ta)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.68997982515132
          - type: f1
            value: 59.36848202755348
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveIntentClassification (te)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.01950235373235
          - type: f1
            value: 60.09351954625423
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveIntentClassification (th)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.29186281102892
          - type: f1
            value: 67.57860496703447
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveIntentClassification (tl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.77471418964357
          - type: f1
            value: 61.913983147713836
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveIntentClassification (tr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.87222595830532
          - type: f1
            value: 66.03679033708141
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveIntentClassification (ur)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.04505716207127
          - type: f1
            value: 61.28569169817908
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveIntentClassification (vi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.38466711499663
          - type: f1
            value: 67.20532357036844
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 71.12306657700067
          - type: f1
            value: 68.91251226588182
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveIntentClassification (zh-TW)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.20040349697378
          - type: f1
            value: 66.02657347714175
        task:
          type: Classification
      - dataset:
          config: af
          name: MTEB MassiveScenarioClassification (af)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 68.73907195696032
          - type: f1
            value: 66.98484521791418
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveScenarioClassification (am)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 60.58843308675185
          - type: f1
            value: 58.95591723092005
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveScenarioClassification (ar)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.22730329522528
          - type: f1
            value: 66.0894499712115
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveScenarioClassification (az)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.48285137861465
          - type: f1
            value: 65.21963176785157
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveScenarioClassification (bn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.74714189643578
          - type: f1
            value: 66.8212192745412
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveScenarioClassification (cy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 59.09213180901143
          - type: f1
            value: 56.70735546356339
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveScenarioClassification (da)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 75.05716207128448
          - type: f1
            value: 74.8413712365364
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveScenarioClassification (de)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.69737726967047
          - type: f1
            value: 74.7664341963
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveScenarioClassification (el)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.90383322125084
          - type: f1
            value: 73.59201554448323
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 77.51176866173503
          - type: f1
            value: 77.46104434577758
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveScenarioClassification (es)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.31069266980496
          - type: f1
            value: 74.61048660675635
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveScenarioClassification (fa)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.95225285810356
          - type: f1
            value: 72.33160006574627
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveScenarioClassification (fi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.12373907195696
          - type: f1
            value: 73.20921012557481
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveScenarioClassification (fr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.86684599865501
          - type: f1
            value: 73.82348774610831
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveScenarioClassification (he)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.40215198386012
          - type: f1
            value: 71.11945183971858
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveScenarioClassification (hi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.12844653665098
          - type: f1
            value: 71.34450495911766
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveScenarioClassification (hu)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.52252858103566
          - type: f1
            value: 73.98878711342999
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveScenarioClassification (hy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 64.93611297915265
          - type: f1
            value: 63.723200467653385
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveScenarioClassification (id)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.11903160726295
          - type: f1
            value: 73.82138439467096
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveScenarioClassification (is)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.15198386012105
          - type: f1
            value: 66.02172193802167
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveScenarioClassification (it)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.32414256893072
          - type: f1
            value: 74.30943421170574
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveScenarioClassification (ja)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 77.46805648957633
          - type: f1
            value: 77.62808409298209
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveScenarioClassification (jv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.318762609280434
          - type: f1
            value: 62.094284066075076
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveScenarioClassification (ka)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 58.34902488231338
          - type: f1
            value: 57.12893860987984
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveScenarioClassification (km)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 50.88433086751849
          - type: f1
            value: 48.2272350802058
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveScenarioClassification (kn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.4425016812374
          - type: f1
            value: 64.61463095996173
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveScenarioClassification (ko)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 75.04707464694015
          - type: f1
            value: 75.05099199098998
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveScenarioClassification (lv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.50437121721586
          - type: f1
            value: 69.83397721096314
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveScenarioClassification (ml)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.94283792871553
          - type: f1
            value: 68.8704663703913
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveScenarioClassification (mn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 64.79488903833222
          - type: f1
            value: 63.615424063345436
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveScenarioClassification (ms)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.88231338264963
          - type: f1
            value: 68.57892302593237
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveScenarioClassification (my)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.248150638870214
          - type: f1
            value: 61.06680605338809
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveScenarioClassification (nb)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.84196368527236
          - type: f1
            value: 74.52566464968763
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveScenarioClassification (nl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.8285137861466
          - type: f1
            value: 74.8853197608802
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveScenarioClassification (pl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.13248150638869
          - type: f1
            value: 74.3982040999179
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveScenarioClassification (pt)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.49024882313383
          - type: f1
            value: 73.82153848368573
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveScenarioClassification (ro)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.72158708809684
          - type: f1
            value: 71.85049433180541
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveScenarioClassification (ru)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 75.137861466039
          - type: f1
            value: 75.37628348188467
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveScenarioClassification (sl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.86953597848016
          - type: f1
            value: 71.87537624521661
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveScenarioClassification (sq)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.27572293207801
          - type: f1
            value: 68.80017302344231
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveScenarioClassification (sv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 76.09952925353059
          - type: f1
            value: 76.07992707688408
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveScenarioClassification (sw)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.140551445864155
          - type: f1
            value: 61.73855010331415
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveScenarioClassification (ta)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.27774041694687
          - type: f1
            value: 64.83664868894539
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveScenarioClassification (te)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.69468728984533
          - type: f1
            value: 64.76239666920868
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveScenarioClassification (th)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.44653665097512
          - type: f1
            value: 73.14646052013873
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveScenarioClassification (tl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.71351714862139
          - type: f1
            value: 66.67212180163382
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveScenarioClassification (tr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.9946200403497
          - type: f1
            value: 73.87348793725525
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveScenarioClassification (ur)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 68.15400134498992
          - type: f1
            value: 67.09433241421094
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveScenarioClassification (vi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 73.11365164761264
          - type: f1
            value: 73.59502539433753
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 76.82582380632145
          - type: f1
            value: 76.89992945316313
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveScenarioClassification (zh-TW)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.81237390719569
          - type: f1
            value: 72.36499770986265
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 31.480506569594695
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 29.71252128004552
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 31.421396787056548
          - type: mrr
            value: 32.48155274872267
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: None
          split: test
          type: nfcorpus
        metrics:
          - type: map_at_1
            value: 5.595
          - type: map_at_10
            value: 12.642000000000001
          - type: map_at_100
            value: 15.726
          - type: map_at_1000
            value: 17.061999999999998
          - type: map_at_3
            value: 9.125
          - type: map_at_5
            value: 10.866000000000001
          - type: mrr_at_1
            value: 43.344
          - type: mrr_at_10
            value: 52.227999999999994
          - type: mrr_at_100
            value: 52.898999999999994
          - type: mrr_at_1000
            value: 52.944
          - type: mrr_at_3
            value: 49.845
          - type: mrr_at_5
            value: 51.115
          - type: ndcg_at_1
            value: 41.949999999999996
          - type: ndcg_at_10
            value: 33.995
          - type: ndcg_at_100
            value: 30.869999999999997
          - type: ndcg_at_1000
            value: 39.487
          - type: ndcg_at_3
            value: 38.903999999999996
          - type: ndcg_at_5
            value: 37.236999999999995
          - type: precision_at_1
            value: 43.344
          - type: precision_at_10
            value: 25.480000000000004
          - type: precision_at_100
            value: 7.672
          - type: precision_at_1000
            value: 2.028
          - type: precision_at_3
            value: 36.636
          - type: precision_at_5
            value: 32.632
          - type: recall_at_1
            value: 5.595
          - type: recall_at_10
            value: 16.466
          - type: recall_at_100
            value: 31.226
          - type: recall_at_1000
            value: 62.778999999999996
          - type: recall_at_3
            value: 9.931
          - type: recall_at_5
            value: 12.884
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: None
          split: test
          type: nq
        metrics:
          - type: map_at_1
            value: 40.414
          - type: map_at_10
            value: 56.754000000000005
          - type: map_at_100
            value: 57.457
          - type: map_at_1000
            value: 57.477999999999994
          - type: map_at_3
            value: 52.873999999999995
          - type: map_at_5
            value: 55.175
          - type: mrr_at_1
            value: 45.278
          - type: mrr_at_10
            value: 59.192
          - type: mrr_at_100
            value: 59.650000000000006
          - type: mrr_at_1000
            value: 59.665
          - type: mrr_at_3
            value: 56.141
          - type: mrr_at_5
            value: 57.998000000000005
          - type: ndcg_at_1
            value: 45.278
          - type: ndcg_at_10
            value: 64.056
          - type: ndcg_at_100
            value: 66.89
          - type: ndcg_at_1000
            value: 67.364
          - type: ndcg_at_3
            value: 56.97
          - type: ndcg_at_5
            value: 60.719
          - type: precision_at_1
            value: 45.278
          - type: precision_at_10
            value: 9.994
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 25.512
          - type: precision_at_5
            value: 17.509
          - type: recall_at_1
            value: 40.414
          - type: recall_at_10
            value: 83.596
          - type: recall_at_100
            value: 95.72
          - type: recall_at_1000
            value: 99.24
          - type: recall_at_3
            value: 65.472
          - type: recall_at_5
            value: 74.039
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: quora
        metrics:
          - type: map_at_1
            value: 70.352
          - type: map_at_10
            value: 84.369
          - type: map_at_100
            value: 85.02499999999999
          - type: map_at_1000
            value: 85.04
          - type: map_at_3
            value: 81.42399999999999
          - type: map_at_5
            value: 83.279
          - type: mrr_at_1
            value: 81.05
          - type: mrr_at_10
            value: 87.401
          - type: mrr_at_100
            value: 87.504
          - type: mrr_at_1000
            value: 87.505
          - type: mrr_at_3
            value: 86.443
          - type: mrr_at_5
            value: 87.10799999999999
          - type: ndcg_at_1
            value: 81.04
          - type: ndcg_at_10
            value: 88.181
          - type: ndcg_at_100
            value: 89.411
          - type: ndcg_at_1000
            value: 89.507
          - type: ndcg_at_3
            value: 85.28099999999999
          - type: ndcg_at_5
            value: 86.888
          - type: precision_at_1
            value: 81.04
          - type: precision_at_10
            value: 13.406
          - type: precision_at_100
            value: 1.5350000000000001
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.31
          - type: precision_at_5
            value: 24.54
          - type: recall_at_1
            value: 70.352
          - type: recall_at_10
            value: 95.358
          - type: recall_at_100
            value: 99.541
          - type: recall_at_1000
            value: 99.984
          - type: recall_at_3
            value: 87.111
          - type: recall_at_5
            value: 91.643
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: v_measure
            value: 46.54068723291946
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: v_measure
            value: 63.216287629895994
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: scidocs
        metrics:
          - type: map_at_1
            value: 4.023000000000001
          - type: map_at_10
            value: 10.071
          - type: map_at_100
            value: 11.892
          - type: map_at_1000
            value: 12.196
          - type: map_at_3
            value: 7.234
          - type: map_at_5
            value: 8.613999999999999
          - type: mrr_at_1
            value: 19.900000000000002
          - type: mrr_at_10
            value: 30.516
          - type: mrr_at_100
            value: 31.656000000000002
          - type: mrr_at_1000
            value: 31.723000000000003
          - type: mrr_at_3
            value: 27.400000000000002
          - type: mrr_at_5
            value: 29.270000000000003
          - type: ndcg_at_1
            value: 19.900000000000002
          - type: ndcg_at_10
            value: 17.474
          - type: ndcg_at_100
            value: 25.020999999999997
          - type: ndcg_at_1000
            value: 30.728
          - type: ndcg_at_3
            value: 16.588
          - type: ndcg_at_5
            value: 14.498
          - type: precision_at_1
            value: 19.900000000000002
          - type: precision_at_10
            value: 9.139999999999999
          - type: precision_at_100
            value: 2.011
          - type: precision_at_1000
            value: 0.33899999999999997
          - type: precision_at_3
            value: 15.667
          - type: precision_at_5
            value: 12.839999999999998
          - type: recall_at_1
            value: 4.023000000000001
          - type: recall_at_10
            value: 18.497
          - type: recall_at_100
            value: 40.8
          - type: recall_at_1000
            value: 68.812
          - type: recall_at_3
            value: 9.508
          - type: recall_at_5
            value: 12.983
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.967008785134
          - type: cos_sim_spearman
            value: 80.23142141101837
          - type: euclidean_pearson
            value: 81.20166064704539
          - type: euclidean_spearman
            value: 80.18961335654585
          - type: manhattan_pearson
            value: 81.13925443187625
          - type: manhattan_spearman
            value: 80.07948723044424
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cos_sim_pearson
            value: 86.94262461316023
          - type: cos_sim_spearman
            value: 80.01596278563865
          - type: euclidean_pearson
            value: 83.80799622922581
          - type: euclidean_spearman
            value: 79.94984954947103
          - type: manhattan_pearson
            value: 83.68473841756281
          - type: manhattan_spearman
            value: 79.84990707951822
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cos_sim_pearson
            value: 80.57346443146068
          - type: cos_sim_spearman
            value: 81.54689837570866
          - type: euclidean_pearson
            value: 81.10909881516007
          - type: euclidean_spearman
            value: 81.56746243261762
          - type: manhattan_pearson
            value: 80.87076036186582
          - type: manhattan_spearman
            value: 81.33074987964402
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cos_sim_pearson
            value: 79.54733787179849
          - type: cos_sim_spearman
            value: 77.72202105610411
          - type: euclidean_pearson
            value: 78.9043595478849
          - type: euclidean_spearman
            value: 77.93422804309435
          - type: manhattan_pearson
            value: 78.58115121621368
          - type: manhattan_spearman
            value: 77.62508135122033
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cos_sim_pearson
            value: 88.59880017237558
          - type: cos_sim_spearman
            value: 89.31088630824758
          - type: euclidean_pearson
            value: 88.47069261564656
          - type: euclidean_spearman
            value: 89.33581971465233
          - type: manhattan_pearson
            value: 88.40774264100956
          - type: manhattan_spearman
            value: 89.28657485627835
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.08055117917084
          - type: cos_sim_spearman
            value: 85.78491813080304
          - type: euclidean_pearson
            value: 84.99329155500392
          - type: euclidean_spearman
            value: 85.76728064677287
          - type: manhattan_pearson
            value: 84.87947428989587
          - type: manhattan_spearman
            value: 85.62429454917464
        task:
          type: STS
      - dataset:
          config: ko-ko
          name: MTEB STS17 (ko-ko)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.14190939287384
          - type: cos_sim_spearman
            value: 82.27331573306041
          - type: euclidean_pearson
            value: 81.891896953716
          - type: euclidean_spearman
            value: 82.37695542955998
          - type: manhattan_pearson
            value: 81.73123869460504
          - type: manhattan_spearman
            value: 82.19989168441421
        task:
          type: STS
      - dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 76.84695301843362
          - type: cos_sim_spearman
            value: 77.87790986014461
          - type: euclidean_pearson
            value: 76.91981583106315
          - type: euclidean_spearman
            value: 77.88154772749589
          - type: manhattan_pearson
            value: 76.94953277451093
          - type: manhattan_spearman
            value: 77.80499230728604
        task:
          type: STS
      - dataset:
          config: en-ar
          name: MTEB STS17 (en-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 75.44657840482016
          - type: cos_sim_spearman
            value: 75.05531095119674
          - type: euclidean_pearson
            value: 75.88161755829299
          - type: euclidean_spearman
            value: 74.73176238219332
          - type: manhattan_pearson
            value: 75.63984765635362
          - type: manhattan_spearman
            value: 74.86476440770737
        task:
          type: STS
      - dataset:
          config: en-de
          name: MTEB STS17 (en-de)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 85.64700140524133
          - type: cos_sim_spearman
            value: 86.16014210425672
          - type: euclidean_pearson
            value: 86.49086860843221
          - type: euclidean_spearman
            value: 86.09729326815614
          - type: manhattan_pearson
            value: 86.43406265125513
          - type: manhattan_spearman
            value: 86.17740150939994
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.91170098764921
          - type: cos_sim_spearman
            value: 88.12437004058931
          - type: euclidean_pearson
            value: 88.81828254494437
          - type: euclidean_spearman
            value: 88.14831794572122
          - type: manhattan_pearson
            value: 88.93442183448961
          - type: manhattan_spearman
            value: 88.15254630778304
        task:
          type: STS
      - dataset:
          config: en-tr
          name: MTEB STS17 (en-tr)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 72.91390577997292
          - type: cos_sim_spearman
            value: 71.22979457536074
          - type: euclidean_pearson
            value: 74.40314008106749
          - type: euclidean_spearman
            value: 72.54972136083246
          - type: manhattan_pearson
            value: 73.85687539530218
          - type: manhattan_spearman
            value: 72.09500771742637
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS17 (es-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 80.9301067983089
          - type: cos_sim_spearman
            value: 80.74989828346473
          - type: euclidean_pearson
            value: 81.36781301814257
          - type: euclidean_spearman
            value: 80.9448819964426
          - type: manhattan_pearson
            value: 81.0351322685609
          - type: manhattan_spearman
            value: 80.70192121844177
        task:
          type: STS
      - dataset:
          config: es-es
          name: MTEB STS17 (es-es)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.13820465980005
          - type: cos_sim_spearman
            value: 86.73532498758757
          - type: euclidean_pearson
            value: 87.21329451846637
          - type: euclidean_spearman
            value: 86.57863198601002
          - type: manhattan_pearson
            value: 87.06973713818554
          - type: manhattan_spearman
            value: 86.47534918791499
        task:
          type: STS
      - dataset:
          config: fr-en
          name: MTEB STS17 (fr-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 85.48720108904415
          - type: cos_sim_spearman
            value: 85.62221757068387
          - type: euclidean_pearson
            value: 86.1010129512749
          - type: euclidean_spearman
            value: 85.86580966509942
          - type: manhattan_pearson
            value: 86.26800938808971
          - type: manhattan_spearman
            value: 85.88902721678429
        task:
          type: STS
      - dataset:
          config: it-en
          name: MTEB STS17 (it-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.98021347333516
          - type: cos_sim_spearman
            value: 84.53806553803501
          - type: euclidean_pearson
            value: 84.61483347248364
          - type: euclidean_spearman
            value: 85.14191408011702
          - type: manhattan_pearson
            value: 84.75297588825967
          - type: manhattan_spearman
            value: 85.33176753669242
        task:
          type: STS
      - dataset:
          config: nl-en
          name: MTEB STS17 (nl-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.51856644893233
          - type: cos_sim_spearman
            value: 85.27510748506413
          - type: euclidean_pearson
            value: 85.09886861540977
          - type: euclidean_spearman
            value: 85.62579245860887
          - type: manhattan_pearson
            value: 84.93017860464607
          - type: manhattan_spearman
            value: 85.5063988898453
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 62.581573200584195
          - type: cos_sim_spearman
            value: 63.05503590247928
          - type: euclidean_pearson
            value: 63.652564812602094
          - type: euclidean_spearman
            value: 62.64811520876156
          - type: manhattan_pearson
            value: 63.506842893061076
          - type: manhattan_spearman
            value: 62.51289573046917
        task:
          type: STS
      - dataset:
          config: de
          name: MTEB STS22 (de)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 48.2248801729127
          - type: cos_sim_spearman
            value: 56.5936604678561
          - type: euclidean_pearson
            value: 43.98149464089
          - type: euclidean_spearman
            value: 56.108561882423615
          - type: manhattan_pearson
            value: 43.86880305903564
          - type: manhattan_spearman
            value: 56.04671150510166
        task:
          type: STS
      - dataset:
          config: es
          name: MTEB STS22 (es)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 55.17564527009831
          - type: cos_sim_spearman
            value: 64.57978560979488
          - type: euclidean_pearson
            value: 58.8818330154583
          - type: euclidean_spearman
            value: 64.99214839071281
          - type: manhattan_pearson
            value: 58.72671436121381
          - type: manhattan_spearman
            value: 65.10713416616109
        task:
          type: STS
      - dataset:
          config: pl
          name: MTEB STS22 (pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 26.772131864023297
          - type: cos_sim_spearman
            value: 34.68200792408681
          - type: euclidean_pearson
            value: 16.68082419005441
          - type: euclidean_spearman
            value: 34.83099932652166
          - type: manhattan_pearson
            value: 16.52605949659529
          - type: manhattan_spearman
            value: 34.82075801399475
        task:
          type: STS
      - dataset:
          config: tr
          name: MTEB STS22 (tr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 54.42415189043831
          - type: cos_sim_spearman
            value: 63.54594264576758
          - type: euclidean_pearson
            value: 57.36577498297745
          - type: euclidean_spearman
            value: 63.111466379158074
          - type: manhattan_pearson
            value: 57.584543715873885
          - type: manhattan_spearman
            value: 63.22361054139183
        task:
          type: STS
      - dataset:
          config: ar
          name: MTEB STS22 (ar)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 47.55216762405518
          - type: cos_sim_spearman
            value: 56.98670142896412
          - type: euclidean_pearson
            value: 50.15318757562699
          - type: euclidean_spearman
            value: 56.524941926541906
          - type: manhattan_pearson
            value: 49.955618528674904
          - type: manhattan_spearman
            value: 56.37102209240117
        task:
          type: STS
      - dataset:
          config: ru
          name: MTEB STS22 (ru)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 49.20540980338571
          - type: cos_sim_spearman
            value: 59.9009453504406
          - type: euclidean_pearson
            value: 49.557749853620535
          - type: euclidean_spearman
            value: 59.76631621172456
          - type: manhattan_pearson
            value: 49.62340591181147
          - type: manhattan_spearman
            value: 59.94224880322436
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 51.508169956576985
          - type: cos_sim_spearman
            value: 66.82461565306046
          - type: euclidean_pearson
            value: 56.2274426480083
          - type: euclidean_spearman
            value: 66.6775323848333
          - type: manhattan_pearson
            value: 55.98277796300661
          - type: manhattan_spearman
            value: 66.63669848497175
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STS22 (fr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 72.86478788045507
          - type: cos_sim_spearman
            value: 76.7946552053193
          - type: euclidean_pearson
            value: 75.01598530490269
          - type: euclidean_spearman
            value: 76.83618917858281
          - type: manhattan_pearson
            value: 74.68337628304332
          - type: manhattan_spearman
            value: 76.57480204017773
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB STS22 (de-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 55.922619099401984
          - type: cos_sim_spearman
            value: 56.599362477240774
          - type: euclidean_pearson
            value: 56.68307052369783
          - type: euclidean_spearman
            value: 54.28760436777401
          - type: manhattan_pearson
            value: 56.67763566500681
          - type: manhattan_spearman
            value: 53.94619541711359
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS22 (es-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 66.74357206710913
          - type: cos_sim_spearman
            value: 72.5208244925311
          - type: euclidean_pearson
            value: 67.49254562186032
          - type: euclidean_spearman
            value: 72.02469076238683
          - type: manhattan_pearson
            value: 67.45251772238085
          - type: manhattan_spearman
            value: 72.05538819984538
        task:
          type: STS
      - dataset:
          config: it
          name: MTEB STS22 (it)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 71.25734330033191
          - type: cos_sim_spearman
            value: 76.98349083946823
          - type: euclidean_pearson
            value: 73.71642838667736
          - type: euclidean_spearman
            value: 77.01715504651384
          - type: manhattan_pearson
            value: 73.61712711868105
          - type: manhattan_spearman
            value: 77.01392571153896
        task:
          type: STS
      - dataset:
          config: pl-en
          name: MTEB STS22 (pl-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 63.18215462781212
          - type: cos_sim_spearman
            value: 65.54373266117607
          - type: euclidean_pearson
            value: 64.54126095439005
          - type: euclidean_spearman
            value: 65.30410369102711
          - type: manhattan_pearson
            value: 63.50332221148234
          - type: manhattan_spearman
            value: 64.3455878104313
        task:
          type: STS
      - dataset:
          config: zh-en
          name: MTEB STS22 (zh-en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 62.30509221440029
          - type: cos_sim_spearman
            value: 65.99582704642478
          - type: euclidean_pearson
            value: 63.43818859884195
          - type: euclidean_spearman
            value: 66.83172582815764
          - type: manhattan_pearson
            value: 63.055779168508764
          - type: manhattan_spearman
            value: 65.49585020501449
        task:
          type: STS
      - dataset:
          config: es-it
          name: MTEB STS22 (es-it)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 59.587830825340404
          - type: cos_sim_spearman
            value: 68.93467614588089
          - type: euclidean_pearson
            value: 62.3073527367404
          - type: euclidean_spearman
            value: 69.69758171553175
          - type: manhattan_pearson
            value: 61.9074580815789
          - type: manhattan_spearman
            value: 69.57696375597865
        task:
          type: STS
      - dataset:
          config: de-fr
          name: MTEB STS22 (de-fr)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 57.143220125577066
          - type: cos_sim_spearman
            value: 67.78857859159226
          - type: euclidean_pearson
            value: 55.58225107923733
          - type: euclidean_spearman
            value: 67.80662907184563
          - type: manhattan_pearson
            value: 56.24953502726514
          - type: manhattan_spearman
            value: 67.98262125431616
        task:
          type: STS
      - dataset:
          config: de-pl
          name: MTEB STS22 (de-pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 21.826928900322066
          - type: cos_sim_spearman
            value: 49.578506634400405
          - type: euclidean_pearson
            value: 27.939890138843214
          - type: euclidean_spearman
            value: 52.71950519136242
          - type: manhattan_pearson
            value: 26.39878683847546
          - type: manhattan_spearman
            value: 47.54609580342499
        task:
          type: STS
      - dataset:
          config: fr-pl
          name: MTEB STS22 (fr-pl)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 57.27603854632001
          - type: cos_sim_spearman
            value: 50.709255283710995
          - type: euclidean_pearson
            value: 59.5419024445929
          - type: euclidean_spearman
            value: 50.709255283710995
          - type: manhattan_pearson
            value: 59.03256832438492
          - type: manhattan_spearman
            value: 61.97797868009122
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cos_sim_pearson
            value: 85.00757054859712
          - type: cos_sim_spearman
            value: 87.29283629622222
          - type: euclidean_pearson
            value: 86.54824171775536
          - type: euclidean_spearman
            value: 87.24364730491402
          - type: manhattan_pearson
            value: 86.5062156915074
          - type: manhattan_spearman
            value: 87.15052170378574
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 82.03549357197389
          - type: mrr
            value: 95.05437645143527
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: None
          split: test
          type: scifact
        metrics:
          - type: map_at_1
            value: 57.260999999999996
          - type: map_at_10
            value: 66.259
          - type: map_at_100
            value: 66.884
          - type: map_at_1000
            value: 66.912
          - type: map_at_3
            value: 63.685
          - type: map_at_5
            value: 65.35499999999999
          - type: mrr_at_1
            value: 60.333000000000006
          - type: mrr_at_10
            value: 67.5
          - type: mrr_at_100
            value: 68.013
          - type: mrr_at_1000
            value: 68.038
          - type: mrr_at_3
            value: 65.61099999999999
          - type: mrr_at_5
            value: 66.861
          - type: ndcg_at_1
            value: 60.333000000000006
          - type: ndcg_at_10
            value: 70.41
          - type: ndcg_at_100
            value: 73.10600000000001
          - type: ndcg_at_1000
            value: 73.846
          - type: ndcg_at_3
            value: 66.133
          - type: ndcg_at_5
            value: 68.499
          - type: precision_at_1
            value: 60.333000000000006
          - type: precision_at_10
            value: 9.232999999999999
          - type: precision_at_100
            value: 1.0630000000000002
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 25.667
          - type: precision_at_5
            value: 17.067
          - type: recall_at_1
            value: 57.260999999999996
          - type: recall_at_10
            value: 81.94399999999999
          - type: recall_at_100
            value: 93.867
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 70.339
          - type: recall_at_5
            value: 76.25
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 99.74356435643564
          - type: cos_sim_ap
            value: 93.13411948212683
          - type: cos_sim_f1
            value: 86.80521991300147
          - type: cos_sim_precision
            value: 84.00374181478017
          - type: cos_sim_recall
            value: 89.8
          - type: dot_accuracy
            value: 99.67920792079208
          - type: dot_ap
            value: 89.27277565444479
          - type: dot_f1
            value: 83.9276990718124
          - type: dot_precision
            value: 82.04393505253104
          - type: dot_recall
            value: 85.9
          - type: euclidean_accuracy
            value: 99.74257425742574
          - type: euclidean_ap
            value: 93.17993008259062
          - type: euclidean_f1
            value: 86.69396110542476
          - type: euclidean_precision
            value: 88.78406708595388
          - type: euclidean_recall
            value: 84.7
          - type: manhattan_accuracy
            value: 99.74257425742574
          - type: manhattan_ap
            value: 93.14413755550099
          - type: manhattan_f1
            value: 86.82483594144371
          - type: manhattan_precision
            value: 87.66564729867483
          - type: manhattan_recall
            value: 86
          - type: max_accuracy
            value: 99.74356435643564
          - type: max_ap
            value: 93.17993008259062
          - type: max_f1
            value: 86.82483594144371
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: v_measure
            value: 57.525863806168566
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: v_measure
            value: 32.68850574423839
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 49.71580650644033
          - type: mrr
            value: 50.50971903913081
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cos_sim_pearson
            value: 29.152190498799484
          - type: cos_sim_spearman
            value: 29.686180371952727
          - type: dot_pearson
            value: 27.248664793816342
          - type: dot_spearman
            value: 28.37748983721745
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: trec-covid
        metrics:
          - type: map_at_1
            value: 0.20400000000000001
          - type: map_at_10
            value: 1.6209999999999998
          - type: map_at_100
            value: 9.690999999999999
          - type: map_at_1000
            value: 23.733
          - type: map_at_3
            value: 0.575
          - type: map_at_5
            value: 0.885
          - type: mrr_at_1
            value: 78
          - type: mrr_at_10
            value: 86.56700000000001
          - type: mrr_at_100
            value: 86.56700000000001
          - type: mrr_at_1000
            value: 86.56700000000001
          - type: mrr_at_3
            value: 85.667
          - type: mrr_at_5
            value: 86.56700000000001
          - type: ndcg_at_1
            value: 76
          - type: ndcg_at_10
            value: 71.326
          - type: ndcg_at_100
            value: 54.208999999999996
          - type: ndcg_at_1000
            value: 49.252
          - type: ndcg_at_3
            value: 74.235
          - type: ndcg_at_5
            value: 73.833
          - type: precision_at_1
            value: 78
          - type: precision_at_10
            value: 74.8
          - type: precision_at_100
            value: 55.50000000000001
          - type: precision_at_1000
            value: 21.836
          - type: precision_at_3
            value: 78
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.20400000000000001
          - type: recall_at_10
            value: 1.894
          - type: recall_at_100
            value: 13.245999999999999
          - type: recall_at_1000
            value: 46.373
          - type: recall_at_3
            value: 0.613
          - type: recall_at_5
            value: 0.991
        task:
          type: Retrieval
      - dataset:
          config: sqi-eng
          name: MTEB Tatoeba (sqi-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.89999999999999
          - type: f1
            value: 94.69999999999999
          - type: precision
            value: 94.11666666666667
          - type: recall
            value: 95.89999999999999
        task:
          type: BitextMining
      - dataset:
          config: fry-eng
          name: MTEB Tatoeba (fry-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 68.20809248554913
          - type: f1
            value: 63.431048720066066
          - type: precision
            value: 61.69143958161298
          - type: recall
            value: 68.20809248554913
        task:
          type: BitextMining
      - dataset:
          config: kur-eng
          name: MTEB Tatoeba (kur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 71.21951219512195
          - type: f1
            value: 66.82926829268293
          - type: precision
            value: 65.1260162601626
          - type: recall
            value: 71.21951219512195
        task:
          type: BitextMining
      - dataset:
          config: tur-eng
          name: MTEB Tatoeba (tur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.2
          - type: f1
            value: 96.26666666666667
          - type: precision
            value: 95.8
          - type: recall
            value: 97.2
        task:
          type: BitextMining
      - dataset:
          config: deu-eng
          name: MTEB Tatoeba (deu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 99.3
          - type: f1
            value: 99.06666666666666
          - type: precision
            value: 98.95
          - type: recall
            value: 99.3
        task:
          type: BitextMining
      - dataset:
          config: nld-eng
          name: MTEB Tatoeba (nld-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.39999999999999
          - type: f1
            value: 96.63333333333333
          - type: precision
            value: 96.26666666666668
          - type: recall
            value: 97.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: ron-eng
          name: MTEB Tatoeba (ron-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.86666666666666
          - type: precision
            value: 94.31666666666668
          - type: recall
            value: 96
        task:
          type: BitextMining
      - dataset:
          config: ang-eng
          name: MTEB Tatoeba (ang-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 47.01492537313433
          - type: f1
            value: 40.178867566927266
          - type: precision
            value: 38.179295828549556
          - type: recall
            value: 47.01492537313433
        task:
          type: BitextMining
      - dataset:
          config: ido-eng
          name: MTEB Tatoeba (ido-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 86.5
          - type: f1
            value: 83.62537480063796
          - type: precision
            value: 82.44555555555554
          - type: recall
            value: 86.5
        task:
          type: BitextMining
      - dataset:
          config: jav-eng
          name: MTEB Tatoeba (jav-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 80.48780487804879
          - type: f1
            value: 75.45644599303138
          - type: precision
            value: 73.37398373983739
          - type: recall
            value: 80.48780487804879
        task:
          type: BitextMining
      - dataset:
          config: isl-eng
          name: MTEB Tatoeba (isl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.95666666666666
          - type: precision
            value: 91.125
          - type: recall
            value: 93.7
        task:
          type: BitextMining
      - dataset:
          config: slv-eng
          name: MTEB Tatoeba (slv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.73754556500607
          - type: f1
            value: 89.65168084244632
          - type: precision
            value: 88.73025516403402
          - type: recall
            value: 91.73754556500607
        task:
          type: BitextMining
      - dataset:
          config: cym-eng
          name: MTEB Tatoeba (cym-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 81.04347826086956
          - type: f1
            value: 76.2128364389234
          - type: precision
            value: 74.2
          - type: recall
            value: 81.04347826086956
        task:
          type: BitextMining
      - dataset:
          config: kaz-eng
          name: MTEB Tatoeba (kaz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 83.65217391304348
          - type: f1
            value: 79.4376811594203
          - type: precision
            value: 77.65797101449274
          - type: recall
            value: 83.65217391304348
        task:
          type: BitextMining
      - dataset:
          config: est-eng
          name: MTEB Tatoeba (est-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 87.5
          - type: f1
            value: 85.02690476190476
          - type: precision
            value: 83.96261904761904
          - type: recall
            value: 87.5
        task:
          type: BitextMining
      - dataset:
          config: heb-eng
          name: MTEB Tatoeba (heb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89.3
          - type: f1
            value: 86.52333333333333
          - type: precision
            value: 85.22833333333332
          - type: recall
            value: 89.3
        task:
          type: BitextMining
      - dataset:
          config: gla-eng
          name: MTEB Tatoeba (gla-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 65.01809408926418
          - type: f1
            value: 59.00594446432805
          - type: precision
            value: 56.827215807915444
          - type: recall
            value: 65.01809408926418
        task:
          type: BitextMining
      - dataset:
          config: mar-eng
          name: MTEB Tatoeba (mar-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.2
          - type: f1
            value: 88.58
          - type: precision
            value: 87.33333333333334
          - type: recall
            value: 91.2
        task:
          type: BitextMining
      - dataset:
          config: lat-eng
          name: MTEB Tatoeba (lat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 59.199999999999996
          - type: f1
            value: 53.299166276284915
          - type: precision
            value: 51.3383908045977
          - type: recall
            value: 59.199999999999996
        task:
          type: BitextMining
      - dataset:
          config: bel-eng
          name: MTEB Tatoeba (bel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.2
          - type: precision
            value: 90.25
          - type: recall
            value: 93.2
        task:
          type: BitextMining
      - dataset:
          config: pms-eng
          name: MTEB Tatoeba (pms-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 64.76190476190476
          - type: f1
            value: 59.867110667110666
          - type: precision
            value: 58.07390192653351
          - type: recall
            value: 64.76190476190476
        task:
          type: BitextMining
      - dataset:
          config: gle-eng
          name: MTEB Tatoeba (gle-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 76.2
          - type: f1
            value: 71.48147546897547
          - type: precision
            value: 69.65409090909091
          - type: recall
            value: 76.2
        task:
          type: BitextMining
      - dataset:
          config: pes-eng
          name: MTEB Tatoeba (pes-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.8
          - type: f1
            value: 92.14
          - type: precision
            value: 91.35833333333333
          - type: recall
            value: 93.8
        task:
          type: BitextMining
      - dataset:
          config: nob-eng
          name: MTEB Tatoeba (nob-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.89999999999999
          - type: f1
            value: 97.2
          - type: precision
            value: 96.85000000000001
          - type: recall
            value: 97.89999999999999
        task:
          type: BitextMining
      - dataset:
          config: bul-eng
          name: MTEB Tatoeba (bul-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 92.93333333333334
          - type: precision
            value: 92.13333333333333
          - type: recall
            value: 94.6
        task:
          type: BitextMining
      - dataset:
          config: cbk-eng
          name: MTEB Tatoeba (cbk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 74.1
          - type: f1
            value: 69.14817460317461
          - type: precision
            value: 67.2515873015873
          - type: recall
            value: 74.1
        task:
          type: BitextMining
      - dataset:
          config: hun-eng
          name: MTEB Tatoeba (hun-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.19999999999999
          - type: f1
            value: 94.01333333333335
          - type: precision
            value: 93.46666666666667
          - type: recall
            value: 95.19999999999999
        task:
          type: BitextMining
      - dataset:
          config: uig-eng
          name: MTEB Tatoeba (uig-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 76.9
          - type: f1
            value: 72.07523809523809
          - type: precision
            value: 70.19777777777779
          - type: recall
            value: 76.9
        task:
          type: BitextMining
      - dataset:
          config: rus-eng
          name: MTEB Tatoeba (rus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.31666666666666
          - type: precision
            value: 91.43333333333332
          - type: recall
            value: 94.1
        task:
          type: BitextMining
      - dataset:
          config: spa-eng
          name: MTEB Tatoeba (spa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.8
          - type: f1
            value: 97.1
          - type: precision
            value: 96.76666666666668
          - type: recall
            value: 97.8
        task:
          type: BitextMining
      - dataset:
          config: hye-eng
          name: MTEB Tatoeba (hye-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.85714285714286
          - type: f1
            value: 90.92093441150045
          - type: precision
            value: 90.00449236298293
          - type: recall
            value: 92.85714285714286
        task:
          type: BitextMining
      - dataset:
          config: tel-eng
          name: MTEB Tatoeba (tel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.16239316239316
          - type: f1
            value: 91.33903133903132
          - type: precision
            value: 90.56267806267806
          - type: recall
            value: 93.16239316239316
        task:
          type: BitextMining
      - dataset:
          config: afr-eng
          name: MTEB Tatoeba (afr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.4
          - type: f1
            value: 90.25666666666666
          - type: precision
            value: 89.25833333333334
          - type: recall
            value: 92.4
        task:
          type: BitextMining
      - dataset:
          config: mon-eng
          name: MTEB Tatoeba (mon-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.22727272727272
          - type: f1
            value: 87.53030303030303
          - type: precision
            value: 86.37121212121211
          - type: recall
            value: 90.22727272727272
        task:
          type: BitextMining
      - dataset:
          config: arz-eng
          name: MTEB Tatoeba (arz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 79.03563941299791
          - type: f1
            value: 74.7349505840072
          - type: precision
            value: 72.9035639412998
          - type: recall
            value: 79.03563941299791
        task:
          type: BitextMining
      - dataset:
          config: hrv-eng
          name: MTEB Tatoeba (hrv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97
          - type: f1
            value: 96.15
          - type: precision
            value: 95.76666666666668
          - type: recall
            value: 97
        task:
          type: BitextMining
      - dataset:
          config: nov-eng
          name: MTEB Tatoeba (nov-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 76.26459143968872
          - type: f1
            value: 71.55642023346303
          - type: precision
            value: 69.7544932369835
          - type: recall
            value: 76.26459143968872
        task:
          type: BitextMining
      - dataset:
          config: gsw-eng
          name: MTEB Tatoeba (gsw-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 58.119658119658126
          - type: f1
            value: 51.65242165242165
          - type: precision
            value: 49.41768108434775
          - type: recall
            value: 58.119658119658126
        task:
          type: BitextMining
      - dataset:
          config: nds-eng
          name: MTEB Tatoeba (nds-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 74.3
          - type: f1
            value: 69.52055555555555
          - type: precision
            value: 67.7574938949939
          - type: recall
            value: 74.3
        task:
          type: BitextMining
      - dataset:
          config: ukr-eng
          name: MTEB Tatoeba (ukr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.8
          - type: f1
            value: 93.31666666666666
          - type: precision
            value: 92.60000000000001
          - type: recall
            value: 94.8
        task:
          type: BitextMining
      - dataset:
          config: uzb-eng
          name: MTEB Tatoeba (uzb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 76.63551401869158
          - type: f1
            value: 72.35202492211837
          - type: precision
            value: 70.60358255451713
          - type: recall
            value: 76.63551401869158
        task:
          type: BitextMining
      - dataset:
          config: lit-eng
          name: MTEB Tatoeba (lit-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.4
          - type: f1
            value: 88.4811111111111
          - type: precision
            value: 87.7452380952381
          - type: recall
            value: 90.4
        task:
          type: BitextMining
      - dataset:
          config: ina-eng
          name: MTEB Tatoeba (ina-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95
          - type: f1
            value: 93.60666666666667
          - type: precision
            value: 92.975
          - type: recall
            value: 95
        task:
          type: BitextMining
      - dataset:
          config: lfn-eng
          name: MTEB Tatoeba (lfn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 67.2
          - type: f1
            value: 63.01595782872099
          - type: precision
            value: 61.596587301587306
          - type: recall
            value: 67.2
        task:
          type: BitextMining
      - dataset:
          config: zsm-eng
          name: MTEB Tatoeba (zsm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.7
          - type: f1
            value: 94.52999999999999
          - type: precision
            value: 94
          - type: recall
            value: 95.7
        task:
          type: BitextMining
      - dataset:
          config: ita-eng
          name: MTEB Tatoeba (ita-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93.28999999999999
          - type: precision
            value: 92.675
          - type: recall
            value: 94.6
        task:
          type: BitextMining
      - dataset:
          config: cmn-eng
          name: MTEB Tatoeba (cmn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.28333333333333
          - type: precision
            value: 94.75
          - type: recall
            value: 96.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: lvs-eng
          name: MTEB Tatoeba (lvs-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.9
          - type: f1
            value: 89.83
          - type: precision
            value: 88.92
          - type: recall
            value: 91.9
        task:
          type: BitextMining
      - dataset:
          config: glg-eng
          name: MTEB Tatoeba (glg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.34222222222223
          - type: precision
            value: 92.75416666666668
          - type: recall
            value: 94.69999999999999
        task:
          type: BitextMining
      - dataset:
          config: ceb-eng
          name: MTEB Tatoeba (ceb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 60.333333333333336
          - type: f1
            value: 55.31203703703703
          - type: precision
            value: 53.39971108326371
          - type: recall
            value: 60.333333333333336
        task:
          type: BitextMining
      - dataset:
          config: bre-eng
          name: MTEB Tatoeba (bre-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 12.9
          - type: f1
            value: 11.099861903031458
          - type: precision
            value: 10.589187932631877
          - type: recall
            value: 12.9
        task:
          type: BitextMining
      - dataset:
          config: ben-eng
          name: MTEB Tatoeba (ben-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 86.7
          - type: f1
            value: 83.0152380952381
          - type: precision
            value: 81.37833333333333
          - type: recall
            value: 86.7
        task:
          type: BitextMining
      - dataset:
          config: swg-eng
          name: MTEB Tatoeba (swg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 63.39285714285714
          - type: f1
            value: 56.832482993197274
          - type: precision
            value: 54.56845238095237
          - type: recall
            value: 63.39285714285714
        task:
          type: BitextMining
      - dataset:
          config: arq-eng
          name: MTEB Tatoeba (arq-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 48.73765093304062
          - type: f1
            value: 41.555736920720456
          - type: precision
            value: 39.06874531737319
          - type: recall
            value: 48.73765093304062
        task:
          type: BitextMining
      - dataset:
          config: kab-eng
          name: MTEB Tatoeba (kab-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 41.099999999999994
          - type: f1
            value: 36.540165945165946
          - type: precision
            value: 35.05175685425686
          - type: recall
            value: 41.099999999999994
        task:
          type: BitextMining
      - dataset:
          config: fra-eng
          name: MTEB Tatoeba (fra-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.89999999999999
          - type: f1
            value: 93.42333333333333
          - type: precision
            value: 92.75833333333333
          - type: recall
            value: 94.89999999999999
        task:
          type: BitextMining
      - dataset:
          config: por-eng
          name: MTEB Tatoeba (por-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.89999999999999
          - type: f1
            value: 93.63333333333334
          - type: precision
            value: 93.01666666666665
          - type: recall
            value: 94.89999999999999
        task:
          type: BitextMining
      - dataset:
          config: tat-eng
          name: MTEB Tatoeba (tat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 77.9
          - type: f1
            value: 73.64833333333334
          - type: precision
            value: 71.90282106782105
          - type: recall
            value: 77.9
        task:
          type: BitextMining
      - dataset:
          config: oci-eng
          name: MTEB Tatoeba (oci-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 59.4
          - type: f1
            value: 54.90521367521367
          - type: precision
            value: 53.432840025471606
          - type: recall
            value: 59.4
        task:
          type: BitextMining
      - dataset:
          config: pol-eng
          name: MTEB Tatoeba (pol-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.39999999999999
          - type: f1
            value: 96.6
          - type: precision
            value: 96.2
          - type: recall
            value: 97.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: war-eng
          name: MTEB Tatoeba (war-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 67.2
          - type: f1
            value: 62.25926129426129
          - type: precision
            value: 60.408376623376626
          - type: recall
            value: 67.2
        task:
          type: BitextMining
      - dataset:
          config: aze-eng
          name: MTEB Tatoeba (aze-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.2
          - type: f1
            value: 87.60666666666667
          - type: precision
            value: 86.45277777777778
          - type: recall
            value: 90.2
        task:
          type: BitextMining
      - dataset:
          config: vie-eng
          name: MTEB Tatoeba (vie-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 97
          - type: precision
            value: 96.65
          - type: recall
            value: 97.7
        task:
          type: BitextMining
      - dataset:
          config: nno-eng
          name: MTEB Tatoeba (nno-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.39746031746031
          - type: precision
            value: 90.6125
          - type: recall
            value: 93.2
        task:
          type: BitextMining
      - dataset:
          config: cha-eng
          name: MTEB Tatoeba (cha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 32.11678832116788
          - type: f1
            value: 27.210415386260234
          - type: precision
            value: 26.20408990846947
          - type: recall
            value: 32.11678832116788
        task:
          type: BitextMining
      - dataset:
          config: mhr-eng
          name: MTEB Tatoeba (mhr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 8.5
          - type: f1
            value: 6.787319277832475
          - type: precision
            value: 6.3452094433344435
          - type: recall
            value: 8.5
        task:
          type: BitextMining
      - dataset:
          config: dan-eng
          name: MTEB Tatoeba (dan-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.1
          - type: f1
            value: 95.08
          - type: precision
            value: 94.61666666666667
          - type: recall
            value: 96.1
        task:
          type: BitextMining
      - dataset:
          config: ell-eng
          name: MTEB Tatoeba (ell-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.3
          - type: f1
            value: 93.88333333333333
          - type: precision
            value: 93.18333333333332
          - type: recall
            value: 95.3
        task:
          type: BitextMining
      - dataset:
          config: amh-eng
          name: MTEB Tatoeba (amh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 85.11904761904762
          - type: f1
            value: 80.69444444444444
          - type: precision
            value: 78.72023809523809
          - type: recall
            value: 85.11904761904762
        task:
          type: BitextMining
      - dataset:
          config: pam-eng
          name: MTEB Tatoeba (pam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 11.1
          - type: f1
            value: 9.276381801735853
          - type: precision
            value: 8.798174603174601
          - type: recall
            value: 11.1
        task:
          type: BitextMining
      - dataset:
          config: hsb-eng
          name: MTEB Tatoeba (hsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 63.56107660455487
          - type: f1
            value: 58.70433569191332
          - type: precision
            value: 56.896926581464015
          - type: recall
            value: 63.56107660455487
        task:
          type: BitextMining
      - dataset:
          config: srp-eng
          name: MTEB Tatoeba (srp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.10000000000001
          - type: precision
            value: 92.35
          - type: recall
            value: 94.69999999999999
        task:
          type: BitextMining
      - dataset:
          config: epo-eng
          name: MTEB Tatoeba (epo-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.8
          - type: f1
            value: 96.01222222222222
          - type: precision
            value: 95.67083333333332
          - type: recall
            value: 96.8
        task:
          type: BitextMining
      - dataset:
          config: kzj-eng
          name: MTEB Tatoeba (kzj-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 9.2
          - type: f1
            value: 7.911555250305249
          - type: precision
            value: 7.631246556216846
          - type: recall
            value: 9.2
        task:
          type: BitextMining
      - dataset:
          config: awa-eng
          name: MTEB Tatoeba (awa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 77.48917748917748
          - type: f1
            value: 72.27375798804371
          - type: precision
            value: 70.14430014430013
          - type: recall
            value: 77.48917748917748
        task:
          type: BitextMining
      - dataset:
          config: fao-eng
          name: MTEB Tatoeba (fao-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 77.09923664122137
          - type: f1
            value: 72.61541257724463
          - type: precision
            value: 70.8998380754106
          - type: recall
            value: 77.09923664122137
        task:
          type: BitextMining
      - dataset:
          config: mal-eng
          name: MTEB Tatoeba (mal-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 98.2532751091703
          - type: f1
            value: 97.69529354682193
          - type: precision
            value: 97.42843279961184
          - type: recall
            value: 98.2532751091703
        task:
          type: BitextMining
      - dataset:
          config: ile-eng
          name: MTEB Tatoeba (ile-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 82.8
          - type: f1
            value: 79.14672619047619
          - type: precision
            value: 77.59489247311828
          - type: recall
            value: 82.8
        task:
          type: BitextMining
      - dataset:
          config: bos-eng
          name: MTEB Tatoeba (bos-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.35028248587571
          - type: f1
            value: 92.86252354048965
          - type: precision
            value: 92.2080979284369
          - type: recall
            value: 94.35028248587571
        task:
          type: BitextMining
      - dataset:
          config: cor-eng
          name: MTEB Tatoeba (cor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 8.5
          - type: f1
            value: 6.282429263935621
          - type: precision
            value: 5.783274240739785
          - type: recall
            value: 8.5
        task:
          type: BitextMining
      - dataset:
          config: cat-eng
          name: MTEB Tatoeba (cat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.7
          - type: f1
            value: 91.025
          - type: precision
            value: 90.30428571428571
          - type: recall
            value: 92.7
        task:
          type: BitextMining
      - dataset:
          config: eus-eng
          name: MTEB Tatoeba (eus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 81
          - type: f1
            value: 77.8232380952381
          - type: precision
            value: 76.60194444444444
          - type: recall
            value: 81
        task:
          type: BitextMining
      - dataset:
          config: yue-eng
          name: MTEB Tatoeba (yue-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91
          - type: f1
            value: 88.70857142857142
          - type: precision
            value: 87.7
          - type: recall
            value: 91
        task:
          type: BitextMining
      - dataset:
          config: swe-eng
          name: MTEB Tatoeba (swe-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.3
          - type: precision
            value: 94.76666666666667
          - type: recall
            value: 96.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: dtp-eng
          name: MTEB Tatoeba (dtp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 8.1
          - type: f1
            value: 7.001008218834307
          - type: precision
            value: 6.708329562594269
          - type: recall
            value: 8.1
        task:
          type: BitextMining
      - dataset:
          config: kat-eng
          name: MTEB Tatoeba (kat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 87.1313672922252
          - type: f1
            value: 84.09070598748882
          - type: precision
            value: 82.79171454104429
          - type: recall
            value: 87.1313672922252
        task:
          type: BitextMining
      - dataset:
          config: jpn-eng
          name: MTEB Tatoeba (jpn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.28333333333333
          - type: precision
            value: 94.73333333333332
          - type: recall
            value: 96.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: csb-eng
          name: MTEB Tatoeba (csb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 42.29249011857708
          - type: f1
            value: 36.981018542283365
          - type: precision
            value: 35.415877813576024
          - type: recall
            value: 42.29249011857708
        task:
          type: BitextMining
      - dataset:
          config: xho-eng
          name: MTEB Tatoeba (xho-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 83.80281690140845
          - type: f1
            value: 80.86854460093896
          - type: precision
            value: 79.60093896713614
          - type: recall
            value: 83.80281690140845
        task:
          type: BitextMining
      - dataset:
          config: orv-eng
          name: MTEB Tatoeba (orv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 45.26946107784431
          - type: f1
            value: 39.80235464678088
          - type: precision
            value: 38.14342660001342
          - type: recall
            value: 45.26946107784431
        task:
          type: BitextMining
      - dataset:
          config: ind-eng
          name: MTEB Tatoeba (ind-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.9
          - type: precision
            value: 92.26666666666668
          - type: recall
            value: 94.3
        task:
          type: BitextMining
      - dataset:
          config: tuk-eng
          name: MTEB Tatoeba (tuk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 37.93103448275862
          - type: f1
            value: 33.15192743764172
          - type: precision
            value: 31.57456528146183
          - type: recall
            value: 37.93103448275862
        task:
          type: BitextMining
      - dataset:
          config: max-eng
          name: MTEB Tatoeba (max-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 69.01408450704226
          - type: f1
            value: 63.41549295774648
          - type: precision
            value: 61.342778895595806
          - type: recall
            value: 69.01408450704226
        task:
          type: BitextMining
      - dataset:
          config: swh-eng
          name: MTEB Tatoeba (swh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 76.66666666666667
          - type: f1
            value: 71.60705960705961
          - type: precision
            value: 69.60683760683762
          - type: recall
            value: 76.66666666666667
        task:
          type: BitextMining
      - dataset:
          config: hin-eng
          name: MTEB Tatoeba (hin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 95.8
          - type: f1
            value: 94.48333333333333
          - type: precision
            value: 93.83333333333333
          - type: recall
            value: 95.8
        task:
          type: BitextMining
      - dataset:
          config: dsb-eng
          name: MTEB Tatoeba (dsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 52.81837160751566
          - type: f1
            value: 48.435977731384824
          - type: precision
            value: 47.11291973845539
          - type: recall
            value: 52.81837160751566
        task:
          type: BitextMining
      - dataset:
          config: ber-eng
          name: MTEB Tatoeba (ber-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 44.9
          - type: f1
            value: 38.88962621607783
          - type: precision
            value: 36.95936507936508
          - type: recall
            value: 44.9
        task:
          type: BitextMining
      - dataset:
          config: tam-eng
          name: MTEB Tatoeba (tam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 90.55374592833876
          - type: f1
            value: 88.22553125484721
          - type: precision
            value: 87.26927252985884
          - type: recall
            value: 90.55374592833876
        task:
          type: BitextMining
      - dataset:
          config: slk-eng
          name: MTEB Tatoeba (slk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93.13333333333333
          - type: precision
            value: 92.45333333333333
          - type: recall
            value: 94.6
        task:
          type: BitextMining
      - dataset:
          config: tgl-eng
          name: MTEB Tatoeba (tgl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.99666666666667
          - type: precision
            value: 91.26666666666668
          - type: recall
            value: 93.7
        task:
          type: BitextMining
      - dataset:
          config: ast-eng
          name: MTEB Tatoeba (ast-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 85.03937007874016
          - type: f1
            value: 81.75853018372703
          - type: precision
            value: 80.34120734908137
          - type: recall
            value: 85.03937007874016
        task:
          type: BitextMining
      - dataset:
          config: mkd-eng
          name: MTEB Tatoeba (mkd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88.3
          - type: f1
            value: 85.5
          - type: precision
            value: 84.25833333333334
          - type: recall
            value: 88.3
        task:
          type: BitextMining
      - dataset:
          config: khm-eng
          name: MTEB Tatoeba (khm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 65.51246537396122
          - type: f1
            value: 60.02297410192148
          - type: precision
            value: 58.133467727289236
          - type: recall
            value: 65.51246537396122
        task:
          type: BitextMining
      - dataset:
          config: ces-eng
          name: MTEB Tatoeba (ces-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.89
          - type: precision
            value: 94.39166666666667
          - type: recall
            value: 96
        task:
          type: BitextMining
      - dataset:
          config: tzl-eng
          name: MTEB Tatoeba (tzl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 57.692307692307686
          - type: f1
            value: 53.162393162393165
          - type: precision
            value: 51.70673076923077
          - type: recall
            value: 57.692307692307686
        task:
          type: BitextMining
      - dataset:
          config: urd-eng
          name: MTEB Tatoeba (urd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91.60000000000001
          - type: f1
            value: 89.21190476190475
          - type: precision
            value: 88.08666666666667
          - type: recall
            value: 91.60000000000001
        task:
          type: BitextMining
      - dataset:
          config: ara-eng
          name: MTEB Tatoeba (ara-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 88
          - type: f1
            value: 85.47
          - type: precision
            value: 84.43266233766234
          - type: recall
            value: 88
        task:
          type: BitextMining
      - dataset:
          config: kor-eng
          name: MTEB Tatoeba (kor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 92.7
          - type: f1
            value: 90.64999999999999
          - type: precision
            value: 89.68333333333332
          - type: recall
            value: 92.7
        task:
          type: BitextMining
      - dataset:
          config: yid-eng
          name: MTEB Tatoeba (yid-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 80.30660377358491
          - type: f1
            value: 76.33044137466307
          - type: precision
            value: 74.78970125786164
          - type: recall
            value: 80.30660377358491
        task:
          type: BitextMining
      - dataset:
          config: fin-eng
          name: MTEB Tatoeba (fin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.44
          - type: precision
            value: 94.99166666666666
          - type: recall
            value: 96.39999999999999
        task:
          type: BitextMining
      - dataset:
          config: tha-eng
          name: MTEB Tatoeba (tha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 96.53284671532847
          - type: f1
            value: 95.37712895377129
          - type: precision
            value: 94.7992700729927
          - type: recall
            value: 96.53284671532847
        task:
          type: BitextMining
      - dataset:
          config: wuu-eng
          name: MTEB Tatoeba (wuu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 89
          - type: f1
            value: 86.23190476190476
          - type: precision
            value: 85.035
          - type: recall
            value: 89
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: None
          split: test
          type: webis-touche2020
        metrics:
          - type: map_at_1
            value: 2.585
          - type: map_at_10
            value: 9.012
          - type: map_at_100
            value: 14.027000000000001
          - type: map_at_1000
            value: 15.565000000000001
          - type: map_at_3
            value: 5.032
          - type: map_at_5
            value: 6.657
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 45.377
          - type: mrr_at_100
            value: 46.119
          - type: mrr_at_1000
            value: 46.127
          - type: mrr_at_3
            value: 41.156
          - type: mrr_at_5
            value: 42.585
          - type: ndcg_at_1
            value: 27.551
          - type: ndcg_at_10
            value: 23.395
          - type: ndcg_at_100
            value: 33.342
          - type: ndcg_at_1000
            value: 45.523
          - type: ndcg_at_3
            value: 25.158
          - type: ndcg_at_5
            value: 23.427
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 21.429000000000002
          - type: precision_at_100
            value: 6.714
          - type: precision_at_1000
            value: 1.473
          - type: precision_at_3
            value: 27.211000000000002
          - type: precision_at_5
            value: 24.490000000000002
          - type: recall_at_1
            value: 2.585
          - type: recall_at_10
            value: 15.418999999999999
          - type: recall_at_100
            value: 42.485
          - type: recall_at_1000
            value: 79.536
          - type: recall_at_3
            value: 6.239999999999999
          - type: recall_at_5
            value: 8.996
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 71.3234
          - type: ap
            value: 14.361688653847423
          - type: f1
            value: 54.819068624319044
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 61.97792869269949
          - type: f1
            value: 62.28965628513728
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: v_measure
            value: 38.90540145385218
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 86.53513739047506
          - type: cos_sim_ap
            value: 75.27741586677557
          - type: cos_sim_f1
            value: 69.18792902473774
          - type: cos_sim_precision
            value: 67.94708725515136
          - type: cos_sim_recall
            value: 70.47493403693932
          - type: dot_accuracy
            value: 84.7052512368123
          - type: dot_ap
            value: 69.36075482849378
          - type: dot_f1
            value: 64.44688376631296
          - type: dot_precision
            value: 59.92288500793831
          - type: dot_recall
            value: 69.70976253298153
          - type: euclidean_accuracy
            value: 86.60666388508076
          - type: euclidean_ap
            value: 75.47512772621097
          - type: euclidean_f1
            value: 69.413872536473
          - type: euclidean_precision
            value: 67.39562624254472
          - type: euclidean_recall
            value: 71.55672823218997
          - type: manhattan_accuracy
            value: 86.52917684925792
          - type: manhattan_ap
            value: 75.34000110496703
          - type: manhattan_f1
            value: 69.28489190226429
          - type: manhattan_precision
            value: 67.24608889992551
          - type: manhattan_recall
            value: 71.45118733509234
          - type: max_accuracy
            value: 86.60666388508076
          - type: max_ap
            value: 75.47512772621097
          - type: max_f1
            value: 69.413872536473
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 89.01695967710637
          - type: cos_sim_ap
            value: 85.8298270742901
          - type: cos_sim_f1
            value: 78.46988128389272
          - type: cos_sim_precision
            value: 74.86017897091722
          - type: cos_sim_recall
            value: 82.44533415460425
          - type: dot_accuracy
            value: 88.19420188613343
          - type: dot_ap
            value: 83.82679165901324
          - type: dot_f1
            value: 76.55833777304208
          - type: dot_precision
            value: 75.6884875846501
          - type: dot_recall
            value: 77.44841392054204
          - type: euclidean_accuracy
            value: 89.03054294252338
          - type: euclidean_ap
            value: 85.89089555185325
          - type: euclidean_f1
            value: 78.62997658079624
          - type: euclidean_precision
            value: 74.92329149232914
          - type: euclidean_recall
            value: 82.72251308900523
          - type: manhattan_accuracy
            value: 89.0266620095471
          - type: manhattan_ap
            value: 85.86458997929147
          - type: manhattan_f1
            value: 78.50685331000291
          - type: manhattan_precision
            value: 74.5499861534201
          - type: manhattan_recall
            value: 82.90729904527257
          - type: max_accuracy
            value: 89.03054294252338
          - type: max_ap
            value: 85.89089555185325
          - type: max_f1
            value: 78.62997658079624
        task:
          type: PairClassification
tags:
  - mteb
  - sentence-similarity
  - feature-extraction
  - onnx
  - teradata

See Disclaimer below


A Teradata Vantage compatible Embeddings Model

intfloat/multilingual-e5-large

Overview of this Model

An Embedding Model which maps text (sentence/ paragraphs) into a vector. The intfloat/multilingual-e5-large model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.

  • 559.89M params (Sizes in ONNX format - "int8": 535.01MB, "uint8": 535.01MB)
  • 514 maximum input tokens
  • 1024 dimensions of output vector
  • Licence: mit. The released models can be used for commercial purposes free of charge.
  • Reference to Original Model: https://huggingface.co./intfloat/multilingual-e5-large

Quickstart: Deploying this Model in Teradata Vantage

We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.

Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.

To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.


import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download

model_name = "multilingual-e5-large"
number_dimensions_output = 1024
model_file_name = "model_int8.onnx"

# Step 1: Download Model from Teradata HuggingFace Page

hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")

# Step 2: Create Connection to Vantage

tdml.create_context(host = input('enter your hostname'), 
                    username=input('enter your username'), 
                    password = getpass.getpass("enter your password"))

# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
               model_file = f"onnx/{model_file_name}",
               table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
              model_file = 'tokenizer.json',
              table_name = 'embeddings_tokenizers') 

# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. 
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT 
        *
from mldb.ONNXEmbeddings(
        on {input_table} as InputTable
        on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
        on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
        using
            Accumulate('id', 'txt') 
            ModelOutputTensor('sentence_embedding')
            EnableMemoryCheck('false')
            OutputFormat('FLOAT32({number_dimensions_output})')
            OverwriteCachedModel('true')
    ) a 
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings

What Can I Do with the Embeddings?

Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:

Deep Dive into Model Conversion to ONNX

The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.

You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.

Part 1. Importing and Converting Model using optimum

We start by importing the pre-trained intfloat/multilingual-e5-large model from Hugging Face.

To enhance performance and ensure compatibility with various execution environments, we'll use the Optimum utility to convert the model into the ONNX (Open Neural Network Exchange) format.

After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage

We are generating ONNX files for multiple different precisions: int8, uint8

You can find the detailed conversion steps in the file convert.py

Part 2. Running the model in Python with onnxruntime & compare results

Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.

If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.

import onnxruntime as rt

from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer

import transformers


sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'

# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("intfloat/multilingual-e5-large")
predef_sess = rt.InferenceSession("onnx/model_int8.onnx")

enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None,     {"input_ids": [enc1.input_ids], 
     "attention_mask": [enc1.attention_mask]})

enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None,     {"input_ids": [enc2.input_ids], 
     "attention_mask": [enc2.attention_mask]})


# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)

# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))

You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py


DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.

To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.

While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.

You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.