martinhillebrandtd's picture
Update README.md
1d6c9d4 verified
metadata
datasets:
  - jinaai/negation-dataset
inference: false
language: en
license: apache-2.0
model-index:
  - name: jina-embedding-s-en-v2
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 71.35820895522387
          - type: ap
            value: 33.99931933598115
          - type: f1
            value: 65.3853685535555
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 82.90140000000001
          - type: ap
            value: 78.01434597815617
          - type: f1
            value: 82.83357802722676
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 40.88999999999999
          - type: f1
            value: 39.209432767163456
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: None
          split: test
          type: arguana
        metrics:
          - type: map_at_1
            value: 23.257
          - type: map_at_10
            value: 37.946000000000005
          - type: map_at_100
            value: 39.17
          - type: map_at_1000
            value: 39.181
          - type: map_at_3
            value: 32.99
          - type: map_at_5
            value: 35.467999999999996
          - type: mrr_at_1
            value: 23.541999999999998
          - type: mrr_at_10
            value: 38.057
          - type: mrr_at_100
            value: 39.289
          - type: mrr_at_1000
            value: 39.299
          - type: mrr_at_3
            value: 33.096
          - type: mrr_at_5
            value: 35.628
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 46.729
          - type: ndcg_at_100
            value: 51.900999999999996
          - type: ndcg_at_1000
            value: 52.16
          - type: ndcg_at_3
            value: 36.323
          - type: ndcg_at_5
            value: 40.766999999999996
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 7.510999999999999
          - type: precision_at_100
            value: 0.976
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.339
          - type: precision_at_5
            value: 11.350999999999999
          - type: recall_at_1
            value: 23.257
          - type: recall_at_10
            value: 75.107
          - type: recall_at_100
            value: 97.58200000000001
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 46.017
          - type: recall_at_5
            value: 56.757000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 44.02420878391967
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 35.16136856000258
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 59.61809790513646
          - type: mrr
            value: 73.07215406938397
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.0167350090749
          - type: cos_sim_spearman
            value: 80.51569002630401
          - type: euclidean_pearson
            value: 81.46820525099726
          - type: euclidean_spearman
            value: 80.51569002630401
          - type: manhattan_pearson
            value: 81.35596555056757
          - type: manhattan_spearman
            value: 80.12592210903303
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 78.25
          - type: f1
            value: 77.34950913540605
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 35.57238596005698
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 29.066444306196683
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CQADupstackAndroidRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 31.891000000000002
          - type: map_at_10
            value: 42.772
          - type: map_at_100
            value: 44.108999999999995
          - type: map_at_1000
            value: 44.236
          - type: map_at_3
            value: 39.289
          - type: map_at_5
            value: 41.113
          - type: mrr_at_1
            value: 39.342
          - type: mrr_at_10
            value: 48.852000000000004
          - type: mrr_at_100
            value: 49.534
          - type: mrr_at_1000
            value: 49.582
          - type: mrr_at_3
            value: 46.089999999999996
          - type: mrr_at_5
            value: 47.685
          - type: ndcg_at_1
            value: 39.342
          - type: ndcg_at_10
            value: 48.988
          - type: ndcg_at_100
            value: 53.854
          - type: ndcg_at_1000
            value: 55.955
          - type: ndcg_at_3
            value: 43.877
          - type: ndcg_at_5
            value: 46.027
          - type: precision_at_1
            value: 39.342
          - type: precision_at_10
            value: 9.285
          - type: precision_at_100
            value: 1.488
          - type: precision_at_1000
            value: 0.194
          - type: precision_at_3
            value: 20.696
          - type: precision_at_5
            value: 14.878
          - type: recall_at_1
            value: 31.891000000000002
          - type: recall_at_10
            value: 60.608
          - type: recall_at_100
            value: 81.025
          - type: recall_at_1000
            value: 94.883
          - type: recall_at_3
            value: 45.694
          - type: recall_at_5
            value: 51.684
          - type: map_at_1
            value: 28.778
          - type: map_at_10
            value: 37.632
          - type: map_at_100
            value: 38.800000000000004
          - type: map_at_1000
            value: 38.934999999999995
          - type: map_at_3
            value: 35.293
          - type: map_at_5
            value: 36.547000000000004
          - type: mrr_at_1
            value: 35.35
          - type: mrr_at_10
            value: 42.936
          - type: mrr_at_100
            value: 43.69
          - type: mrr_at_1000
            value: 43.739
          - type: mrr_at_3
            value: 41.062
          - type: mrr_at_5
            value: 42.097
          - type: ndcg_at_1
            value: 35.35
          - type: ndcg_at_10
            value: 42.528
          - type: ndcg_at_100
            value: 46.983000000000004
          - type: ndcg_at_1000
            value: 49.187999999999995
          - type: ndcg_at_3
            value: 39.271
          - type: ndcg_at_5
            value: 40.654
          - type: precision_at_1
            value: 35.35
          - type: precision_at_10
            value: 7.828
          - type: precision_at_100
            value: 1.3010000000000002
          - type: precision_at_1000
            value: 0.17700000000000002
          - type: precision_at_3
            value: 18.96
          - type: precision_at_5
            value: 13.120999999999999
          - type: recall_at_1
            value: 28.778
          - type: recall_at_10
            value: 50.775000000000006
          - type: recall_at_100
            value: 69.66799999999999
          - type: recall_at_1000
            value: 83.638
          - type: recall_at_3
            value: 40.757
          - type: recall_at_5
            value: 44.86
          - type: map_at_1
            value: 37.584
          - type: map_at_10
            value: 49.69
          - type: map_at_100
            value: 50.639
          - type: map_at_1000
            value: 50.702999999999996
          - type: map_at_3
            value: 46.61
          - type: map_at_5
            value: 48.486000000000004
          - type: mrr_at_1
            value: 43.009
          - type: mrr_at_10
            value: 52.949999999999996
          - type: mrr_at_100
            value: 53.618
          - type: mrr_at_1000
            value: 53.65299999999999
          - type: mrr_at_3
            value: 50.605999999999995
          - type: mrr_at_5
            value: 52.095
          - type: ndcg_at_1
            value: 43.009
          - type: ndcg_at_10
            value: 55.278000000000006
          - type: ndcg_at_100
            value: 59.134
          - type: ndcg_at_1000
            value: 60.528999999999996
          - type: ndcg_at_3
            value: 50.184
          - type: ndcg_at_5
            value: 52.919000000000004
          - type: precision_at_1
            value: 43.009
          - type: precision_at_10
            value: 8.821
          - type: precision_at_100
            value: 1.161
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 22.424
          - type: precision_at_5
            value: 15.436
          - type: recall_at_1
            value: 37.584
          - type: recall_at_10
            value: 68.514
          - type: recall_at_100
            value: 85.099
          - type: recall_at_1000
            value: 95.123
          - type: recall_at_3
            value: 55.007
          - type: recall_at_5
            value: 61.714999999999996
          - type: map_at_1
            value: 24.7
          - type: map_at_10
            value: 32.804
          - type: map_at_100
            value: 33.738
          - type: map_at_1000
            value: 33.825
          - type: map_at_3
            value: 30.639
          - type: map_at_5
            value: 31.781
          - type: mrr_at_1
            value: 26.328000000000003
          - type: mrr_at_10
            value: 34.679
          - type: mrr_at_100
            value: 35.510000000000005
          - type: mrr_at_1000
            value: 35.577999999999996
          - type: mrr_at_3
            value: 32.58
          - type: mrr_at_5
            value: 33.687
          - type: ndcg_at_1
            value: 26.328000000000003
          - type: ndcg_at_10
            value: 37.313
          - type: ndcg_at_100
            value: 42.004000000000005
          - type: ndcg_at_1000
            value: 44.232
          - type: ndcg_at_3
            value: 33.076
          - type: ndcg_at_5
            value: 34.966
          - type: precision_at_1
            value: 26.328000000000003
          - type: precision_at_10
            value: 5.627
          - type: precision_at_100
            value: 0.8410000000000001
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 14.011000000000001
          - type: precision_at_5
            value: 9.582
          - type: recall_at_1
            value: 24.7
          - type: recall_at_10
            value: 49.324
          - type: recall_at_100
            value: 71.018
          - type: recall_at_1000
            value: 87.905
          - type: recall_at_3
            value: 37.7
          - type: recall_at_5
            value: 42.281
          - type: map_at_1
            value: 14.350999999999999
          - type: map_at_10
            value: 21.745
          - type: map_at_100
            value: 22.731
          - type: map_at_1000
            value: 22.852
          - type: map_at_3
            value: 19.245
          - type: map_at_5
            value: 20.788
          - type: mrr_at_1
            value: 18.159
          - type: mrr_at_10
            value: 25.833000000000002
          - type: mrr_at_100
            value: 26.728
          - type: mrr_at_1000
            value: 26.802
          - type: mrr_at_3
            value: 23.383000000000003
          - type: mrr_at_5
            value: 24.887999999999998
          - type: ndcg_at_1
            value: 18.159
          - type: ndcg_at_10
            value: 26.518000000000004
          - type: ndcg_at_100
            value: 31.473000000000003
          - type: ndcg_at_1000
            value: 34.576
          - type: ndcg_at_3
            value: 21.907
          - type: ndcg_at_5
            value: 24.39
          - type: precision_at_1
            value: 18.159
          - type: precision_at_10
            value: 4.938
          - type: precision_at_100
            value: 0.853
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 10.655000000000001
          - type: precision_at_5
            value: 7.985
          - type: recall_at_1
            value: 14.350999999999999
          - type: recall_at_10
            value: 37.284
          - type: recall_at_100
            value: 59.11300000000001
          - type: recall_at_1000
            value: 81.634
          - type: recall_at_3
            value: 24.753
          - type: recall_at_5
            value: 30.979
          - type: map_at_1
            value: 26.978
          - type: map_at_10
            value: 36.276
          - type: map_at_100
            value: 37.547000000000004
          - type: map_at_1000
            value: 37.678
          - type: map_at_3
            value: 33.674
          - type: map_at_5
            value: 35.119
          - type: mrr_at_1
            value: 32.916000000000004
          - type: mrr_at_10
            value: 41.798
          - type: mrr_at_100
            value: 42.72
          - type: mrr_at_1000
            value: 42.778
          - type: mrr_at_3
            value: 39.493
          - type: mrr_at_5
            value: 40.927
          - type: ndcg_at_1
            value: 32.916000000000004
          - type: ndcg_at_10
            value: 41.81
          - type: ndcg_at_100
            value: 47.284
          - type: ndcg_at_1000
            value: 49.702
          - type: ndcg_at_3
            value: 37.486999999999995
          - type: ndcg_at_5
            value: 39.597
          - type: precision_at_1
            value: 32.916000000000004
          - type: precision_at_10
            value: 7.411
          - type: precision_at_100
            value: 1.189
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 17.581
          - type: precision_at_5
            value: 12.397
          - type: recall_at_1
            value: 26.978
          - type: recall_at_10
            value: 52.869
          - type: recall_at_100
            value: 75.78399999999999
          - type: recall_at_1000
            value: 91.545
          - type: recall_at_3
            value: 40.717
          - type: recall_at_5
            value: 46.168
          - type: map_at_1
            value: 24.641
          - type: map_at_10
            value: 32.916000000000004
          - type: map_at_100
            value: 34.165
          - type: map_at_1000
            value: 34.286
          - type: map_at_3
            value: 30.335
          - type: map_at_5
            value: 31.569000000000003
          - type: mrr_at_1
            value: 30.593999999999998
          - type: mrr_at_10
            value: 38.448
          - type: mrr_at_100
            value: 39.299
          - type: mrr_at_1000
            value: 39.362
          - type: mrr_at_3
            value: 36.244
          - type: mrr_at_5
            value: 37.232
          - type: ndcg_at_1
            value: 30.593999999999998
          - type: ndcg_at_10
            value: 38.2
          - type: ndcg_at_100
            value: 43.742
          - type: ndcg_at_1000
            value: 46.217000000000006
          - type: ndcg_at_3
            value: 33.925
          - type: ndcg_at_5
            value: 35.394
          - type: precision_at_1
            value: 30.593999999999998
          - type: precision_at_10
            value: 6.895
          - type: precision_at_100
            value: 1.1320000000000001
          - type: precision_at_1000
            value: 0.153
          - type: precision_at_3
            value: 16.096
          - type: precision_at_5
            value: 11.05
          - type: recall_at_1
            value: 24.641
          - type: recall_at_10
            value: 48.588
          - type: recall_at_100
            value: 72.841
          - type: recall_at_1000
            value: 89.535
          - type: recall_at_3
            value: 36.087
          - type: recall_at_5
            value: 40.346
          - type: map_at_1
            value: 24.79425
          - type: map_at_10
            value: 33.12033333333333
          - type: map_at_100
            value: 34.221333333333334
          - type: map_at_1000
            value: 34.3435
          - type: map_at_3
            value: 30.636583333333338
          - type: map_at_5
            value: 31.974083333333326
          - type: mrr_at_1
            value: 29.242416666666664
          - type: mrr_at_10
            value: 37.11675
          - type: mrr_at_100
            value: 37.93783333333334
          - type: mrr_at_1000
            value: 38.003083333333336
          - type: mrr_at_3
            value: 34.904666666666664
          - type: mrr_at_5
            value: 36.12916666666667
          - type: ndcg_at_1
            value: 29.242416666666664
          - type: ndcg_at_10
            value: 38.03416666666667
          - type: ndcg_at_100
            value: 42.86674999999999
          - type: ndcg_at_1000
            value: 45.34550000000001
          - type: ndcg_at_3
            value: 33.76466666666666
          - type: ndcg_at_5
            value: 35.668666666666674
          - type: precision_at_1
            value: 29.242416666666664
          - type: precision_at_10
            value: 6.589833333333334
          - type: precision_at_100
            value: 1.0693333333333332
          - type: precision_at_1000
            value: 0.14641666666666667
          - type: precision_at_3
            value: 15.430749999999998
          - type: precision_at_5
            value: 10.833833333333333
          - type: recall_at_1
            value: 24.79425
          - type: recall_at_10
            value: 48.582916666666655
          - type: recall_at_100
            value: 69.88499999999999
          - type: recall_at_1000
            value: 87.211
          - type: recall_at_3
            value: 36.625499999999995
          - type: recall_at_5
            value: 41.553999999999995
          - type: map_at_1
            value: 22.767
          - type: map_at_10
            value: 28.450999999999997
          - type: map_at_100
            value: 29.332
          - type: map_at_1000
            value: 29.426000000000002
          - type: map_at_3
            value: 26.379
          - type: map_at_5
            value: 27.584999999999997
          - type: mrr_at_1
            value: 25.46
          - type: mrr_at_10
            value: 30.974
          - type: mrr_at_100
            value: 31.784000000000002
          - type: mrr_at_1000
            value: 31.857999999999997
          - type: mrr_at_3
            value: 28.962
          - type: mrr_at_5
            value: 30.066
          - type: ndcg_at_1
            value: 25.46
          - type: ndcg_at_10
            value: 32.041
          - type: ndcg_at_100
            value: 36.522
          - type: ndcg_at_1000
            value: 39.101
          - type: ndcg_at_3
            value: 28.152
          - type: ndcg_at_5
            value: 30.03
          - type: precision_at_1
            value: 25.46
          - type: precision_at_10
            value: 4.893
          - type: precision_at_100
            value: 0.77
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 11.605
          - type: precision_at_5
            value: 8.19
          - type: recall_at_1
            value: 22.767
          - type: recall_at_10
            value: 40.71
          - type: recall_at_100
            value: 61.334999999999994
          - type: recall_at_1000
            value: 80.567
          - type: recall_at_3
            value: 30.198000000000004
          - type: recall_at_5
            value: 34.803
          - type: map_at_1
            value: 16.722
          - type: map_at_10
            value: 22.794
          - type: map_at_100
            value: 23.7
          - type: map_at_1000
            value: 23.822
          - type: map_at_3
            value: 20.781
          - type: map_at_5
            value: 22.024
          - type: mrr_at_1
            value: 20.061999999999998
          - type: mrr_at_10
            value: 26.346999999999998
          - type: mrr_at_100
            value: 27.153
          - type: mrr_at_1000
            value: 27.233
          - type: mrr_at_3
            value: 24.375
          - type: mrr_at_5
            value: 25.593
          - type: ndcg_at_1
            value: 20.061999999999998
          - type: ndcg_at_10
            value: 26.785999999999998
          - type: ndcg_at_100
            value: 31.319999999999997
          - type: ndcg_at_1000
            value: 34.346
          - type: ndcg_at_3
            value: 23.219
          - type: ndcg_at_5
            value: 25.107000000000003
          - type: precision_at_1
            value: 20.061999999999998
          - type: precision_at_10
            value: 4.78
          - type: precision_at_100
            value: 0.83
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 10.874
          - type: precision_at_5
            value: 7.956
          - type: recall_at_1
            value: 16.722
          - type: recall_at_10
            value: 35.204
          - type: recall_at_100
            value: 55.797
          - type: recall_at_1000
            value: 77.689
          - type: recall_at_3
            value: 25.245
          - type: recall_at_5
            value: 30.115
          - type: map_at_1
            value: 24.842
          - type: map_at_10
            value: 32.917
          - type: map_at_100
            value: 33.961000000000006
          - type: map_at_1000
            value: 34.069
          - type: map_at_3
            value: 30.595
          - type: map_at_5
            value: 31.837
          - type: mrr_at_1
            value: 29.011
          - type: mrr_at_10
            value: 36.977
          - type: mrr_at_100
            value: 37.814
          - type: mrr_at_1000
            value: 37.885999999999996
          - type: mrr_at_3
            value: 34.966
          - type: mrr_at_5
            value: 36.043
          - type: ndcg_at_1
            value: 29.011
          - type: ndcg_at_10
            value: 37.735
          - type: ndcg_at_100
            value: 42.683
          - type: ndcg_at_1000
            value: 45.198
          - type: ndcg_at_3
            value: 33.650000000000006
          - type: ndcg_at_5
            value: 35.386
          - type: precision_at_1
            value: 29.011
          - type: precision_at_10
            value: 6.259
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 15.329999999999998
          - type: precision_at_5
            value: 10.541
          - type: recall_at_1
            value: 24.842
          - type: recall_at_10
            value: 48.304
          - type: recall_at_100
            value: 70.04899999999999
          - type: recall_at_1000
            value: 87.82600000000001
          - type: recall_at_3
            value: 36.922
          - type: recall_at_5
            value: 41.449999999999996
          - type: map_at_1
            value: 24.252000000000002
          - type: map_at_10
            value: 32.293
          - type: map_at_100
            value: 33.816
          - type: map_at_1000
            value: 34.053
          - type: map_at_3
            value: 29.781999999999996
          - type: map_at_5
            value: 31.008000000000003
          - type: mrr_at_1
            value: 29.051
          - type: mrr_at_10
            value: 36.722
          - type: mrr_at_100
            value: 37.663000000000004
          - type: mrr_at_1000
            value: 37.734
          - type: mrr_at_3
            value: 34.354
          - type: mrr_at_5
            value: 35.609
          - type: ndcg_at_1
            value: 29.051
          - type: ndcg_at_10
            value: 37.775999999999996
          - type: ndcg_at_100
            value: 43.221
          - type: ndcg_at_1000
            value: 46.116
          - type: ndcg_at_3
            value: 33.403
          - type: ndcg_at_5
            value: 35.118
          - type: precision_at_1
            value: 29.051
          - type: precision_at_10
            value: 7.332
          - type: precision_at_100
            value: 1.49
          - type: precision_at_1000
            value: 0.23600000000000002
          - type: precision_at_3
            value: 15.415000000000001
          - type: precision_at_5
            value: 11.107
          - type: recall_at_1
            value: 24.252000000000002
          - type: recall_at_10
            value: 47.861
          - type: recall_at_100
            value: 72.21600000000001
          - type: recall_at_1000
            value: 90.886
          - type: recall_at_3
            value: 35.533
          - type: recall_at_5
            value: 39.959
          - type: map_at_1
            value: 20.025000000000002
          - type: map_at_10
            value: 27.154
          - type: map_at_100
            value: 28.118
          - type: map_at_1000
            value: 28.237000000000002
          - type: map_at_3
            value: 25.017
          - type: map_at_5
            value: 25.832
          - type: mrr_at_1
            value: 21.627
          - type: mrr_at_10
            value: 28.884999999999998
          - type: mrr_at_100
            value: 29.741
          - type: mrr_at_1000
            value: 29.831999999999997
          - type: mrr_at_3
            value: 26.741
          - type: mrr_at_5
            value: 27.628000000000004
          - type: ndcg_at_1
            value: 21.627
          - type: ndcg_at_10
            value: 31.436999999999998
          - type: ndcg_at_100
            value: 36.181000000000004
          - type: ndcg_at_1000
            value: 38.986
          - type: ndcg_at_3
            value: 27.025
          - type: ndcg_at_5
            value: 28.436
          - type: precision_at_1
            value: 21.627
          - type: precision_at_10
            value: 5.009
          - type: precision_at_100
            value: 0.7929999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 11.522
          - type: precision_at_5
            value: 7.763000000000001
          - type: recall_at_1
            value: 20.025000000000002
          - type: recall_at_10
            value: 42.954
          - type: recall_at_100
            value: 64.67500000000001
          - type: recall_at_1000
            value: 85.301
          - type: recall_at_3
            value: 30.892999999999997
          - type: recall_at_5
            value: 34.288000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: None
          split: test
          type: climate-fever
        metrics:
          - type: map_at_1
            value: 10.079
          - type: map_at_10
            value: 16.930999999999997
          - type: map_at_100
            value: 18.398999999999997
          - type: map_at_1000
            value: 18.561
          - type: map_at_3
            value: 14.294
          - type: map_at_5
            value: 15.579
          - type: mrr_at_1
            value: 22.606
          - type: mrr_at_10
            value: 32.513
          - type: mrr_at_100
            value: 33.463
          - type: mrr_at_1000
            value: 33.513999999999996
          - type: mrr_at_3
            value: 29.479
          - type: mrr_at_5
            value: 31.3
          - type: ndcg_at_1
            value: 22.606
          - type: ndcg_at_10
            value: 24.053
          - type: ndcg_at_100
            value: 30.258000000000003
          - type: ndcg_at_1000
            value: 33.516
          - type: ndcg_at_3
            value: 19.721
          - type: ndcg_at_5
            value: 21.144
          - type: precision_at_1
            value: 22.606
          - type: precision_at_10
            value: 7.55
          - type: precision_at_100
            value: 1.399
          - type: precision_at_1000
            value: 0.2
          - type: precision_at_3
            value: 14.701
          - type: precision_at_5
            value: 11.192
          - type: recall_at_1
            value: 10.079
          - type: recall_at_10
            value: 28.970000000000002
          - type: recall_at_100
            value: 50.805
          - type: recall_at_1000
            value: 69.378
          - type: recall_at_3
            value: 18.199
          - type: recall_at_5
            value: 22.442
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: None
          split: test
          type: dbpedia-entity
        metrics:
          - type: map_at_1
            value: 7.794
          - type: map_at_10
            value: 15.165999999999999
          - type: map_at_100
            value: 20.508000000000003
          - type: map_at_1000
            value: 21.809
          - type: map_at_3
            value: 11.568000000000001
          - type: map_at_5
            value: 13.059000000000001
          - type: mrr_at_1
            value: 56.49999999999999
          - type: mrr_at_10
            value: 65.90899999999999
          - type: mrr_at_100
            value: 66.352
          - type: mrr_at_1000
            value: 66.369
          - type: mrr_at_3
            value: 64
          - type: mrr_at_5
            value: 65.10000000000001
          - type: ndcg_at_1
            value: 44.25
          - type: ndcg_at_10
            value: 32.649
          - type: ndcg_at_100
            value: 36.668
          - type: ndcg_at_1000
            value: 43.918
          - type: ndcg_at_3
            value: 37.096000000000004
          - type: ndcg_at_5
            value: 34.048
          - type: precision_at_1
            value: 56.49999999999999
          - type: precision_at_10
            value: 25.45
          - type: precision_at_100
            value: 8.055
          - type: precision_at_1000
            value: 1.7489999999999999
          - type: precision_at_3
            value: 41
          - type: precision_at_5
            value: 32.85
          - type: recall_at_1
            value: 7.794
          - type: recall_at_10
            value: 20.101
          - type: recall_at_100
            value: 42.448
          - type: recall_at_1000
            value: 65.88000000000001
          - type: recall_at_3
            value: 12.753
          - type: recall_at_5
            value: 15.307
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 44.01
          - type: f1
            value: 38.659680951114964
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: None
          split: test
          type: fever
        metrics:
          - type: map_at_1
            value: 49.713
          - type: map_at_10
            value: 61.79
          - type: map_at_100
            value: 62.28
          - type: map_at_1000
            value: 62.297000000000004
          - type: map_at_3
            value: 59.361
          - type: map_at_5
            value: 60.92100000000001
          - type: mrr_at_1
            value: 53.405
          - type: mrr_at_10
            value: 65.79899999999999
          - type: mrr_at_100
            value: 66.219
          - type: mrr_at_1000
            value: 66.227
          - type: mrr_at_3
            value: 63.431000000000004
          - type: mrr_at_5
            value: 64.98
          - type: ndcg_at_1
            value: 53.405
          - type: ndcg_at_10
            value: 68.01899999999999
          - type: ndcg_at_100
            value: 70.197
          - type: ndcg_at_1000
            value: 70.571
          - type: ndcg_at_3
            value: 63.352
          - type: ndcg_at_5
            value: 66.018
          - type: precision_at_1
            value: 53.405
          - type: precision_at_10
            value: 9.119
          - type: precision_at_100
            value: 1.03
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 25.602999999999998
          - type: precision_at_5
            value: 16.835
          - type: recall_at_1
            value: 49.713
          - type: recall_at_10
            value: 83.306
          - type: recall_at_100
            value: 92.92
          - type: recall_at_1000
            value: 95.577
          - type: recall_at_3
            value: 70.798
          - type: recall_at_5
            value: 77.254
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: None
          split: test
          type: fiqa
        metrics:
          - type: map_at_1
            value: 15.310000000000002
          - type: map_at_10
            value: 26.204
          - type: map_at_100
            value: 27.932000000000002
          - type: map_at_1000
            value: 28.121000000000002
          - type: map_at_3
            value: 22.481
          - type: map_at_5
            value: 24.678
          - type: mrr_at_1
            value: 29.784
          - type: mrr_at_10
            value: 39.582
          - type: mrr_at_100
            value: 40.52
          - type: mrr_at_1000
            value: 40.568
          - type: mrr_at_3
            value: 37.114000000000004
          - type: mrr_at_5
            value: 38.596000000000004
          - type: ndcg_at_1
            value: 29.784
          - type: ndcg_at_10
            value: 33.432
          - type: ndcg_at_100
            value: 40.281
          - type: ndcg_at_1000
            value: 43.653999999999996
          - type: ndcg_at_3
            value: 29.612
          - type: ndcg_at_5
            value: 31.223
          - type: precision_at_1
            value: 29.784
          - type: precision_at_10
            value: 9.645
          - type: precision_at_100
            value: 1.645
          - type: precision_at_1000
            value: 0.22499999999999998
          - type: precision_at_3
            value: 20.165
          - type: precision_at_5
            value: 15.401000000000002
          - type: recall_at_1
            value: 15.310000000000002
          - type: recall_at_10
            value: 40.499
          - type: recall_at_100
            value: 66.643
          - type: recall_at_1000
            value: 87.059
          - type: recall_at_3
            value: 27.492
          - type: recall_at_5
            value: 33.748
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: None
          split: test
          type: hotpotqa
        metrics:
          - type: map_at_1
            value: 33.599000000000004
          - type: map_at_10
            value: 47.347
          - type: map_at_100
            value: 48.191
          - type: map_at_1000
            value: 48.263
          - type: map_at_3
            value: 44.698
          - type: map_at_5
            value: 46.278999999999996
          - type: mrr_at_1
            value: 67.19800000000001
          - type: mrr_at_10
            value: 74.054
          - type: mrr_at_100
            value: 74.376
          - type: mrr_at_1000
            value: 74.392
          - type: mrr_at_3
            value: 72.849
          - type: mrr_at_5
            value: 73.643
          - type: ndcg_at_1
            value: 67.19800000000001
          - type: ndcg_at_10
            value: 56.482
          - type: ndcg_at_100
            value: 59.694
          - type: ndcg_at_1000
            value: 61.204
          - type: ndcg_at_3
            value: 52.43299999999999
          - type: ndcg_at_5
            value: 54.608000000000004
          - type: precision_at_1
            value: 67.19800000000001
          - type: precision_at_10
            value: 11.613999999999999
          - type: precision_at_100
            value: 1.415
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 32.726
          - type: precision_at_5
            value: 21.349999999999998
          - type: recall_at_1
            value: 33.599000000000004
          - type: recall_at_10
            value: 58.069
          - type: recall_at_100
            value: 70.736
          - type: recall_at_1000
            value: 80.804
          - type: recall_at_3
            value: 49.088
          - type: recall_at_5
            value: 53.376000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 73.64359999999999
          - type: ap
            value: 67.54685976014599
          - type: f1
            value: 73.55148707559482
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: None
          split: dev
          type: msmarco
        metrics:
          - type: map_at_1
            value: 19.502
          - type: map_at_10
            value: 30.816
          - type: map_at_100
            value: 32.007999999999996
          - type: map_at_1000
            value: 32.067
          - type: map_at_3
            value: 27.215
          - type: map_at_5
            value: 29.304000000000002
          - type: mrr_at_1
            value: 20.072000000000003
          - type: mrr_at_10
            value: 31.406
          - type: mrr_at_100
            value: 32.549
          - type: mrr_at_1000
            value: 32.602
          - type: mrr_at_3
            value: 27.839000000000002
          - type: mrr_at_5
            value: 29.926000000000002
          - type: ndcg_at_1
            value: 20.086000000000002
          - type: ndcg_at_10
            value: 37.282
          - type: ndcg_at_100
            value: 43.206
          - type: ndcg_at_1000
            value: 44.690000000000005
          - type: ndcg_at_3
            value: 29.932
          - type: ndcg_at_5
            value: 33.668
          - type: precision_at_1
            value: 20.086000000000002
          - type: precision_at_10
            value: 5.961
          - type: precision_at_100
            value: 0.898
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 12.856000000000002
          - type: precision_at_5
            value: 9.596
          - type: recall_at_1
            value: 19.502
          - type: recall_at_10
            value: 57.182
          - type: recall_at_100
            value: 84.952
          - type: recall_at_1000
            value: 96.34700000000001
          - type: recall_at_3
            value: 37.193
          - type: recall_at_5
            value: 46.157
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 93.96488828089375
          - type: f1
            value: 93.32119260543482
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 72.4965800273598
          - type: f1
            value: 49.34896217536082
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.60928043039678
          - type: f1
            value: 64.34244712074538
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.75453934095493
          - type: f1
            value: 68.39224867489249
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 31.862573504920082
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 27.511123551196803
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 30.99145104942086
          - type: mrr
            value: 32.03606480418627
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: None
          split: test
          type: nfcorpus
        metrics:
          - type: map_at_1
            value: 5.015
          - type: map_at_10
            value: 11.054
          - type: map_at_100
            value: 13.773
          - type: map_at_1000
            value: 15.082999999999998
          - type: map_at_3
            value: 8.253
          - type: map_at_5
            value: 9.508999999999999
          - type: mrr_at_1
            value: 42.105
          - type: mrr_at_10
            value: 50.44499999999999
          - type: mrr_at_100
            value: 51.080000000000005
          - type: mrr_at_1000
            value: 51.129999999999995
          - type: mrr_at_3
            value: 48.555
          - type: mrr_at_5
            value: 49.84
          - type: ndcg_at_1
            value: 40.402
          - type: ndcg_at_10
            value: 30.403000000000002
          - type: ndcg_at_100
            value: 28.216
          - type: ndcg_at_1000
            value: 37.021
          - type: ndcg_at_3
            value: 35.53
          - type: ndcg_at_5
            value: 33.202999999999996
          - type: precision_at_1
            value: 42.105
          - type: precision_at_10
            value: 22.353
          - type: precision_at_100
            value: 7.266
          - type: precision_at_1000
            value: 2.011
          - type: precision_at_3
            value: 32.921
          - type: precision_at_5
            value: 28.297
          - type: recall_at_1
            value: 5.015
          - type: recall_at_10
            value: 14.393
          - type: recall_at_100
            value: 28.893
          - type: recall_at_1000
            value: 60.18
          - type: recall_at_3
            value: 9.184000000000001
          - type: recall_at_5
            value: 11.39
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: None
          split: test
          type: nq
        metrics:
          - type: map_at_1
            value: 29.524
          - type: map_at_10
            value: 44.182
          - type: map_at_100
            value: 45.228
          - type: map_at_1000
            value: 45.265
          - type: map_at_3
            value: 39.978
          - type: map_at_5
            value: 42.482
          - type: mrr_at_1
            value: 33.256
          - type: mrr_at_10
            value: 46.661
          - type: mrr_at_100
            value: 47.47
          - type: mrr_at_1000
            value: 47.496
          - type: mrr_at_3
            value: 43.187999999999995
          - type: mrr_at_5
            value: 45.330999999999996
          - type: ndcg_at_1
            value: 33.227000000000004
          - type: ndcg_at_10
            value: 51.589
          - type: ndcg_at_100
            value: 56.043
          - type: ndcg_at_1000
            value: 56.937000000000005
          - type: ndcg_at_3
            value: 43.751
          - type: ndcg_at_5
            value: 47.937000000000005
          - type: precision_at_1
            value: 33.227000000000004
          - type: precision_at_10
            value: 8.556999999999999
          - type: precision_at_100
            value: 1.103
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 19.921
          - type: precision_at_5
            value: 14.396999999999998
          - type: recall_at_1
            value: 29.524
          - type: recall_at_10
            value: 71.615
          - type: recall_at_100
            value: 91.056
          - type: recall_at_1000
            value: 97.72800000000001
          - type: recall_at_3
            value: 51.451
          - type: recall_at_5
            value: 61.119
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: quora
        metrics:
          - type: map_at_1
            value: 69.596
          - type: map_at_10
            value: 83.281
          - type: map_at_100
            value: 83.952
          - type: map_at_1000
            value: 83.97200000000001
          - type: map_at_3
            value: 80.315
          - type: map_at_5
            value: 82.223
          - type: mrr_at_1
            value: 80.17
          - type: mrr_at_10
            value: 86.522
          - type: mrr_at_100
            value: 86.644
          - type: mrr_at_1000
            value: 86.64500000000001
          - type: mrr_at_3
            value: 85.438
          - type: mrr_at_5
            value: 86.21799999999999
          - type: ndcg_at_1
            value: 80.19
          - type: ndcg_at_10
            value: 87.19
          - type: ndcg_at_100
            value: 88.567
          - type: ndcg_at_1000
            value: 88.70400000000001
          - type: ndcg_at_3
            value: 84.17999999999999
          - type: ndcg_at_5
            value: 85.931
          - type: precision_at_1
            value: 80.19
          - type: precision_at_10
            value: 13.209000000000001
          - type: precision_at_100
            value: 1.518
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 36.717
          - type: precision_at_5
            value: 24.248
          - type: recall_at_1
            value: 69.596
          - type: recall_at_10
            value: 94.533
          - type: recall_at_100
            value: 99.322
          - type: recall_at_1000
            value: 99.965
          - type: recall_at_3
            value: 85.911
          - type: recall_at_5
            value: 90.809
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: v_measure
            value: 49.27650627571912
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: v_measure
            value: 57.08550946534183
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: scidocs
        metrics:
          - type: map_at_1
            value: 4.568
          - type: map_at_10
            value: 10.862
          - type: map_at_100
            value: 12.757
          - type: map_at_1000
            value: 13.031
          - type: map_at_3
            value: 7.960000000000001
          - type: map_at_5
            value: 9.337
          - type: mrr_at_1
            value: 22.5
          - type: mrr_at_10
            value: 32.6
          - type: mrr_at_100
            value: 33.603
          - type: mrr_at_1000
            value: 33.672000000000004
          - type: mrr_at_3
            value: 29.299999999999997
          - type: mrr_at_5
            value: 31.25
          - type: ndcg_at_1
            value: 22.5
          - type: ndcg_at_10
            value: 18.605
          - type: ndcg_at_100
            value: 26.029999999999998
          - type: ndcg_at_1000
            value: 31.256
          - type: ndcg_at_3
            value: 17.873
          - type: ndcg_at_5
            value: 15.511
          - type: precision_at_1
            value: 22.5
          - type: precision_at_10
            value: 9.58
          - type: precision_at_100
            value: 2.033
          - type: precision_at_1000
            value: 0.33
          - type: precision_at_3
            value: 16.633
          - type: precision_at_5
            value: 13.54
          - type: recall_at_1
            value: 4.568
          - type: recall_at_10
            value: 19.402
          - type: recall_at_100
            value: 41.277
          - type: recall_at_1000
            value: 66.963
          - type: recall_at_3
            value: 10.112
          - type: recall_at_5
            value: 13.712
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.31992291680787
          - type: cos_sim_spearman
            value: 76.7212346922664
          - type: euclidean_pearson
            value: 80.42189271706478
          - type: euclidean_spearman
            value: 76.7212342532493
          - type: manhattan_pearson
            value: 80.33171093031578
          - type: manhattan_spearman
            value: 76.63192883074694
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.16654278886763
          - type: cos_sim_spearman
            value: 73.66390263429565
          - type: euclidean_pearson
            value: 79.7485360086639
          - type: euclidean_spearman
            value: 73.66389870373436
          - type: manhattan_pearson
            value: 79.73652237443706
          - type: manhattan_spearman
            value: 73.65296117151647
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.40389689929246
          - type: cos_sim_spearman
            value: 83.29727595993955
          - type: euclidean_pearson
            value: 82.23970587854079
          - type: euclidean_spearman
            value: 83.29727595993955
          - type: manhattan_pearson
            value: 82.18823600831897
          - type: manhattan_spearman
            value: 83.20746192209594
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cos_sim_pearson
            value: 81.73505246913413
          - type: cos_sim_spearman
            value: 79.1686548248754
          - type: euclidean_pearson
            value: 80.48889135993412
          - type: euclidean_spearman
            value: 79.16864112930354
          - type: manhattan_pearson
            value: 80.40720651057302
          - type: manhattan_spearman
            value: 79.0640155089286
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cos_sim_pearson
            value: 86.3953512879065
          - type: cos_sim_spearman
            value: 87.29947322714338
          - type: euclidean_pearson
            value: 86.59759438529645
          - type: euclidean_spearman
            value: 87.29947511092824
          - type: manhattan_pearson
            value: 86.52097806169155
          - type: manhattan_spearman
            value: 87.22987242146534
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.48565753792056
          - type: cos_sim_spearman
            value: 83.6049720319893
          - type: euclidean_pearson
            value: 82.56452023172913
          - type: euclidean_spearman
            value: 83.60490168191697
          - type: manhattan_pearson
            value: 82.58079941137872
          - type: manhattan_spearman
            value: 83.60975807374051
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 88.18239976618212
          - type: cos_sim_spearman
            value: 88.23061724730616
          - type: euclidean_pearson
            value: 87.78482472776658
          - type: euclidean_spearman
            value: 88.23061724730616
          - type: manhattan_pearson
            value: 87.75059641730239
          - type: manhattan_spearman
            value: 88.22527413524622
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 63.42816418706765
          - type: cos_sim_spearman
            value: 63.4569864520124
          - type: euclidean_pearson
            value: 64.35405409953853
          - type: euclidean_spearman
            value: 63.4569864520124
          - type: manhattan_pearson
            value: 63.96649236073056
          - type: manhattan_spearman
            value: 63.01448583722708
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.41659638047614
          - type: cos_sim_spearman
            value: 84.03893866106175
          - type: euclidean_pearson
            value: 84.2251203953798
          - type: euclidean_spearman
            value: 84.03893866106175
          - type: manhattan_pearson
            value: 84.22733643205514
          - type: manhattan_spearman
            value: 84.06504411263612
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 79.75608022582414
          - type: mrr
            value: 94.0947732369301
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: None
          split: test
          type: scifact
        metrics:
          - type: map_at_1
            value: 50.161
          - type: map_at_10
            value: 59.458999999999996
          - type: map_at_100
            value: 60.156
          - type: map_at_1000
            value: 60.194
          - type: map_at_3
            value: 56.45400000000001
          - type: map_at_5
            value: 58.165
          - type: mrr_at_1
            value: 53.333
          - type: mrr_at_10
            value: 61.050000000000004
          - type: mrr_at_100
            value: 61.586
          - type: mrr_at_1000
            value: 61.624
          - type: mrr_at_3
            value: 58.889
          - type: mrr_at_5
            value: 60.122
          - type: ndcg_at_1
            value: 53.333
          - type: ndcg_at_10
            value: 63.888999999999996
          - type: ndcg_at_100
            value: 66.963
          - type: ndcg_at_1000
            value: 68.062
          - type: ndcg_at_3
            value: 59.01
          - type: ndcg_at_5
            value: 61.373999999999995
          - type: precision_at_1
            value: 53.333
          - type: precision_at_10
            value: 8.633000000000001
          - type: precision_at_100
            value: 1.027
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 23.111
          - type: precision_at_5
            value: 15.467
          - type: recall_at_1
            value: 50.161
          - type: recall_at_10
            value: 75.922
          - type: recall_at_100
            value: 90
          - type: recall_at_1000
            value: 98.667
          - type: recall_at_3
            value: 62.90599999999999
          - type: recall_at_5
            value: 68.828
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 99.81188118811882
          - type: cos_sim_ap
            value: 95.11619225962413
          - type: cos_sim_f1
            value: 90.35840484603736
          - type: cos_sim_precision
            value: 91.23343527013252
          - type: cos_sim_recall
            value: 89.5
          - type: dot_accuracy
            value: 99.81188118811882
          - type: dot_ap
            value: 95.11619225962413
          - type: dot_f1
            value: 90.35840484603736
          - type: dot_precision
            value: 91.23343527013252
          - type: dot_recall
            value: 89.5
          - type: euclidean_accuracy
            value: 99.81188118811882
          - type: euclidean_ap
            value: 95.11619225962413
          - type: euclidean_f1
            value: 90.35840484603736
          - type: euclidean_precision
            value: 91.23343527013252
          - type: euclidean_recall
            value: 89.5
          - type: manhattan_accuracy
            value: 99.80891089108911
          - type: manhattan_ap
            value: 95.07294266220966
          - type: manhattan_f1
            value: 90.21794221996959
          - type: manhattan_precision
            value: 91.46968139773895
          - type: manhattan_recall
            value: 89
          - type: max_accuracy
            value: 99.81188118811882
          - type: max_ap
            value: 95.11619225962413
          - type: max_f1
            value: 90.35840484603736
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: v_measure
            value: 55.3481874105239
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: v_measure
            value: 34.421291695525
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 49.98746633276634
          - type: mrr
            value: 50.63143249724133
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cos_sim_pearson
            value: 31.009961979844036
          - type: cos_sim_spearman
            value: 30.558416108881044
          - type: dot_pearson
            value: 31.009964941134253
          - type: dot_spearman
            value: 30.545760761761393
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: trec-covid
        metrics:
          - type: map_at_1
            value: 0.207
          - type: map_at_10
            value: 1.6
          - type: map_at_100
            value: 8.594
          - type: map_at_1000
            value: 20.213
          - type: map_at_3
            value: 0.585
          - type: map_at_5
            value: 0.9039999999999999
          - type: mrr_at_1
            value: 78
          - type: mrr_at_10
            value: 87.4
          - type: mrr_at_100
            value: 87.4
          - type: mrr_at_1000
            value: 87.4
          - type: mrr_at_3
            value: 86.667
          - type: mrr_at_5
            value: 87.06700000000001
          - type: ndcg_at_1
            value: 73
          - type: ndcg_at_10
            value: 65.18
          - type: ndcg_at_100
            value: 49.631
          - type: ndcg_at_1000
            value: 43.498999999999995
          - type: ndcg_at_3
            value: 71.83800000000001
          - type: ndcg_at_5
            value: 69.271
          - type: precision_at_1
            value: 78
          - type: precision_at_10
            value: 69.19999999999999
          - type: precision_at_100
            value: 50.980000000000004
          - type: precision_at_1000
            value: 19.426
          - type: precision_at_3
            value: 77.333
          - type: precision_at_5
            value: 74
          - type: recall_at_1
            value: 0.207
          - type: recall_at_10
            value: 1.822
          - type: recall_at_100
            value: 11.849
          - type: recall_at_1000
            value: 40.492
          - type: recall_at_3
            value: 0.622
          - type: recall_at_5
            value: 0.9809999999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: None
          split: test
          type: webis-touche2020
        metrics:
          - type: map_at_1
            value: 2.001
          - type: map_at_10
            value: 10.376000000000001
          - type: map_at_100
            value: 16.936999999999998
          - type: map_at_1000
            value: 18.615000000000002
          - type: map_at_3
            value: 5.335999999999999
          - type: map_at_5
            value: 7.374
          - type: mrr_at_1
            value: 20.408
          - type: mrr_at_10
            value: 38.29
          - type: mrr_at_100
            value: 39.33
          - type: mrr_at_1000
            value: 39.347
          - type: mrr_at_3
            value: 32.993
          - type: mrr_at_5
            value: 36.973
          - type: ndcg_at_1
            value: 17.347
          - type: ndcg_at_10
            value: 23.515
          - type: ndcg_at_100
            value: 37.457
          - type: ndcg_at_1000
            value: 49.439
          - type: ndcg_at_3
            value: 22.762999999999998
          - type: ndcg_at_5
            value: 22.622
          - type: precision_at_1
            value: 20.408
          - type: precision_at_10
            value: 22.448999999999998
          - type: precision_at_100
            value: 8.184
          - type: precision_at_1000
            value: 1.608
          - type: precision_at_3
            value: 25.85
          - type: precision_at_5
            value: 25.306
          - type: recall_at_1
            value: 2.001
          - type: recall_at_10
            value: 17.422
          - type: recall_at_100
            value: 51.532999999999994
          - type: recall_at_1000
            value: 87.466
          - type: recall_at_3
            value: 6.861000000000001
          - type: recall_at_5
            value: 10.502
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 71.54419999999999
          - type: ap
            value: 14.372170450843907
          - type: f1
            value: 54.94420257390529
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 59.402942840973395
          - type: f1
            value: 59.4166538875571
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: v_measure
            value: 41.569064336457906
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 85.31322644096085
          - type: cos_sim_ap
            value: 72.14518894837381
          - type: cos_sim_f1
            value: 66.67489813557229
          - type: cos_sim_precision
            value: 62.65954977953121
          - type: cos_sim_recall
            value: 71.2401055408971
          - type: dot_accuracy
            value: 85.31322644096085
          - type: dot_ap
            value: 72.14521480685293
          - type: dot_f1
            value: 66.67489813557229
          - type: dot_precision
            value: 62.65954977953121
          - type: dot_recall
            value: 71.2401055408971
          - type: euclidean_accuracy
            value: 85.31322644096085
          - type: euclidean_ap
            value: 72.14520820485349
          - type: euclidean_f1
            value: 66.67489813557229
          - type: euclidean_precision
            value: 62.65954977953121
          - type: euclidean_recall
            value: 71.2401055408971
          - type: manhattan_accuracy
            value: 85.21785778148656
          - type: manhattan_ap
            value: 72.01177147657364
          - type: manhattan_f1
            value: 66.62594673833374
          - type: manhattan_precision
            value: 62.0336669699727
          - type: manhattan_recall
            value: 71.95250659630607
          - type: max_accuracy
            value: 85.31322644096085
          - type: max_ap
            value: 72.14521480685293
          - type: max_f1
            value: 66.67489813557229
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 89.12756626693057
          - type: cos_sim_ap
            value: 86.05430786440826
          - type: cos_sim_f1
            value: 78.27759692216631
          - type: cos_sim_precision
            value: 75.33466248931929
          - type: cos_sim_recall
            value: 81.45980905451185
          - type: dot_accuracy
            value: 89.12950673341872
          - type: dot_ap
            value: 86.05431161145492
          - type: dot_f1
            value: 78.27759692216631
          - type: dot_precision
            value: 75.33466248931929
          - type: dot_recall
            value: 81.45980905451185
          - type: euclidean_accuracy
            value: 89.12756626693057
          - type: euclidean_ap
            value: 86.05431303247397
          - type: euclidean_f1
            value: 78.27759692216631
          - type: euclidean_precision
            value: 75.33466248931929
          - type: euclidean_recall
            value: 81.45980905451185
          - type: manhattan_accuracy
            value: 89.04994760740482
          - type: manhattan_ap
            value: 86.00860610892074
          - type: manhattan_f1
            value: 78.1846776005392
          - type: manhattan_precision
            value: 76.10438839480975
          - type: manhattan_recall
            value: 80.3818909762858
          - type: max_accuracy
            value: 89.12950673341872
          - type: max_ap
            value: 86.05431303247397
          - type: max_f1
            value: 78.27759692216631
        task:
          type: PairClassification
tags:
  - feature-extraction
  - sentence-similarity
  - mteb
  - onnx
  - teradata

See Disclaimer below


A Teradata Vantage compatible Embeddings Model

jinaai/jina-embeddings-v2-small-en

Overview of this Model

An Embedding Model which maps text (sentence/ paragraphs) into a vector. The jinaai/jina-embeddings-v2-small-en model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.

  • 32.69M params (Sizes in ONNX format - "fp32": 123.8MB, "int8": 31.14MB, "uint8": 31.14MB)
  • 8192 maximum input tokens
  • 512 dimensions of output vector
  • Licence: apache-2.0. The released models can be used for commercial purposes free of charge.
  • Reference to Original Model: https://huggingface.co./jinaai/jina-embeddings-v2-small-en

Quickstart: Deploying this Model in Teradata Vantage

We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.

Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.

To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.


import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download

model_name = "jina-embeddings-v2-small-en"
number_dimensions_output = 512
model_file_name = "model.onnx"

# Step 1: Download Model from Teradata HuggingFace Page

hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")

# Step 2: Create Connection to Vantage

tdml.create_context(host = input('enter your hostname'), 
                    username=input('enter your username'), 
                    password = getpass.getpass("enter your password"))

# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
               model_file = f"onnx/{model_file_name}",
               table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
              model_file = 'tokenizer.json',
              table_name = 'embeddings_tokenizers') 

# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. 
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT 
        *
from mldb.ONNXEmbeddings(
        on {input_table} as InputTable
        on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
        on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
        using
            Accumulate('id', 'txt') 
            ModelOutputTensor('sentence_embedding')
            EnableMemoryCheck('false')
            OutputFormat('FLOAT32({number_dimensions_output})')
            OverwriteCachedModel('true')
    ) a 
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings

What Can I Do with the Embeddings?

Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:

Deep Dive into Model Conversion to ONNX

The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.

You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.

Part 1. Importing and Converting Model using optimum

We start by importing the pre-trained jinaai/jina-embeddings-v2-small-en model from Hugging Face.

We are downloading the ONNX files from the repository prepared by the model authors.

After downloading, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage

Also we adding the man pooling and normalization layers to the ONNX file

We are generating ONNX files for multiple different precisions: fp32, int8, uint8

You can find the detailed conversion steps in the file convert.py

Part 2. Running the model in Python with onnxruntime & compare results

Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.

If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.

import onnxruntime as rt

from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer

import transformers


sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'

# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-small-en")
predef_sess = rt.InferenceSession("onnx/model.onnx")

enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None,     {"input_ids": [enc1.input_ids], 
     "attention_mask": [enc1.attention_mask]})

enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None,     {"input_ids": [enc2.input_ids], 
     "attention_mask": [enc2.attention_mask]})


# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)

# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))

You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py


DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.

To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.

While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.

You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.