martinhillebrandtd's picture
Update README.md
5ebd23d verified
metadata
language:
  - af
  - ar
  - az
  - be
  - bg
  - bn
  - ca
  - ceb
  - cs
  - cy
  - da
  - de
  - el
  - en
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - gl
  - gu
  - he
  - hi
  - hr
  - ht
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ky
  - lo
  - lt
  - lv
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - pa
  - pl
  - pt
  - qu
  - ro
  - ru
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - uk
  - ur
  - vi
  - yo
  - zh
license: apache-2.0
model-index:
  - name: gte-multilingual-base (dense)
    results:
      - dataset:
          config: default
          name: MTEB 8TagsClustering
          revision: None
          split: test
          type: PL-MTEB/8tags-clustering
        metrics:
          - type: v_measure
            value: 33.66681726329994
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AFQMC
          revision: b44c3b011063adb25877c13823db83bb193913c4
          split: validation
          type: C-MTEB/AFQMC
        metrics:
          - type: cos_sim_spearman
            value: 43.54760696384009
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB ATEC
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
          split: test
          type: C-MTEB/ATEC
        metrics:
          - type: cos_sim_spearman
            value: 48.91186363417501
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB AllegroReviews
          revision: None
          split: test
          type: PL-MTEB/allegro-reviews
        metrics:
          - type: accuracy
            value: 41.689860834990064
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AlloProfClusteringP2P
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
          split: test
          type: lyon-nlp/alloprof
        metrics:
          - type: v_measure
            value: 54.20241337977897
          - type: v_measure
            value: 44.34083695608643
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AlloprofReranking
          revision: 666fdacebe0291776e86f29345663dfaf80a0db9
          split: test
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
        metrics:
          - type: map
            value: 64.91495250072002
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB AlloprofRetrieval
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
          split: test
          type: lyon-nlp/alloprof
        metrics:
          - type: ndcg_at_10
            value: 53.638
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 75.95522388059702
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 80.717625
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 43.64199999999999
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB AmazonReviewsClassification (de)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 40.108
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB AmazonReviewsClassification (es)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 40.169999999999995
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB AmazonReviewsClassification (fr)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 39.56799999999999
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB AmazonReviewsClassification (ja)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 35.75000000000001
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 33.342000000000006
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
          split: test
          type: mteb/arguana
        metrics:
          - type: ndcg_at_10
            value: 58.231
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArguAna-PL
          revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
          split: test
          type: clarin-knext/arguana-pl
        metrics:
          - type: ndcg_at_10
            value: 53.166000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 46.01900557959478
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 41.06626465345723
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 61.87514497610431
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cos_sim_spearman
            value: 81.21450112991194
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB BQ
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
          split: test
          type: C-MTEB/BQ
        metrics:
          - type: cos_sim_spearman
            value: 51.71589543397271
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB BSARDRetrieval
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
          split: test
          type: maastrichtlawtech/bsard
        metrics:
          - type: ndcg_at_10
            value: 26.115
        task:
          type: Retrieval
      - dataset:
          config: de-en
          name: MTEB BUCC (de-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: f1
            value: 98.6169102296451
        task:
          type: BitextMining
      - dataset:
          config: fr-en
          name: MTEB BUCC (fr-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: f1
            value: 97.89603052314916
        task:
          type: BitextMining
      - dataset:
          config: ru-en
          name: MTEB BUCC (ru-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: f1
            value: 97.12388869645537
        task:
          type: BitextMining
      - dataset:
          config: zh-en
          name: MTEB BUCC (zh-en)
          revision: d51519689f32196a32af33b075a01d0e7c51e252
          split: test
          type: mteb/bucc-bitext-mining
        metrics:
          - type: f1
            value: 98.15692469720906
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 85.36038961038962
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 37.5903826674123
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 34.21474277151329
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CBD
          revision: None
          split: test
          type: PL-MTEB/cbd
        metrics:
          - type: accuracy
            value: 62.519999999999996
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB CDSC-E
          revision: None
          split: test
          type: PL-MTEB/cdsce-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 74.90132799162956
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CDSC-R
          revision: None
          split: test
          type: PL-MTEB/cdscr-sts
        metrics:
          - type: cos_sim_spearman
            value: 90.30727955142524
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB CLSClusteringP2P
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
          split: test
          type: C-MTEB/CLSClusteringP2P
        metrics:
          - type: v_measure
            value: 37.94850105022274
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CLSClusteringS2S
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
          split: test
          type: C-MTEB/CLSClusteringS2S
        metrics:
          - type: v_measure
            value: 38.11958675421534
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CMedQAv1
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
          split: test
          type: C-MTEB/CMedQAv1-reranking
        metrics:
          - type: map
            value: 86.10950950485399
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CMedQAv2
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
          split: test
          type: C-MTEB/CMedQAv2-reranking
        metrics:
          - type: map
            value: 87.28038294231966
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CQADupstackAndroidRetrieval
          revision: f46a197baaae43b4f621051089b82a364682dfeb
          split: test
          type: mteb/cqadupstack-android
        metrics:
          - type: ndcg_at_10
            value: 47.099000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackEnglishRetrieval
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
          split: test
          type: mteb/cqadupstack-english
        metrics:
          - type: ndcg_at_10
            value: 45.973000000000006
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGamingRetrieval
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
          split: test
          type: mteb/cqadupstack-gaming
        metrics:
          - type: ndcg_at_10
            value: 55.606
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGisRetrieval
          revision: 5003b3064772da1887988e05400cf3806fe491f2
          split: test
          type: mteb/cqadupstack-gis
        metrics:
          - type: ndcg_at_10
            value: 36.638
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackMathematicaRetrieval
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
          split: test
          type: mteb/cqadupstack-mathematica
        metrics:
          - type: ndcg_at_10
            value: 30.711
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackPhysicsRetrieval
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
          split: test
          type: mteb/cqadupstack-physics
        metrics:
          - type: ndcg_at_10
            value: 44.523
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackProgrammersRetrieval
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
          split: test
          type: mteb/cqadupstack-programmers
        metrics:
          - type: ndcg_at_10
            value: 37.940000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackRetrieval
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
          split: test
          type: mteb/cqadupstack
        metrics:
          - type: ndcg_at_10
            value: 38.12183333333333
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackStatsRetrieval
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
          split: test
          type: mteb/cqadupstack-stats
        metrics:
          - type: ndcg_at_10
            value: 32.684000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackTexRetrieval
          revision: 46989137a86843e03a6195de44b09deda022eec7
          split: test
          type: mteb/cqadupstack-tex
        metrics:
          - type: ndcg_at_10
            value: 26.735
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackUnixRetrieval
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
          split: test
          type: mteb/cqadupstack-unix
        metrics:
          - type: ndcg_at_10
            value: 36.933
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWebmastersRetrieval
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
          split: test
          type: mteb/cqadupstack-webmasters
        metrics:
          - type: ndcg_at_10
            value: 33.747
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWordpressRetrieval
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
          split: test
          type: mteb/cqadupstack-wordpress
        metrics:
          - type: ndcg_at_10
            value: 28.872999999999998
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
          split: test
          type: mteb/climate-fever
        metrics:
          - type: ndcg_at_10
            value: 34.833
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: ndcg_at_10
            value: 43.78
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Cmnli
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
          split: validation
          type: C-MTEB/CMNLI
        metrics:
          - type: cos_sim_ap
            value: 84.00640599186677
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CovidRetrieval
          revision: 1271c7809071a13532e05f25fb53511ffce77117
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: ndcg_at_10
            value: 80.60000000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
          split: test
          type: mteb/dbpedia
        metrics:
          - type: ndcg_at_10
            value: 40.116
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia-PL
          revision: 76afe41d9af165cc40999fcaa92312b8b012064a
          split: test
          type: clarin-knext/dbpedia-pl
        metrics:
          - type: ndcg_at_10
            value: 32.498
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: ndcg_at_10
            value: 87.547
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: ndcg_at_10
            value: 64.85
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 47.949999999999996
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
          split: test
          type: mteb/fever
        metrics:
          - type: ndcg_at_10
            value: 92.111
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA-PL
          revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
          split: test
          type: clarin-knext/fiqa-pl
        metrics:
          - type: ndcg_at_10
            value: 28.962
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
          split: test
          type: mteb/fiqa
        metrics:
          - type: ndcg_at_10
            value: 45.005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HALClusteringS2S
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
          split: test
          type: lyon-nlp/clustering-hal-s2s
        metrics:
          - type: v_measure
            value: 25.133776435657595
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
          split: test
          type: mteb/hotpotqa
        metrics:
          - type: ndcg_at_10
            value: 63.036
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA-PL
          revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
          split: test
          type: clarin-knext/hotpotqa-pl
        metrics:
          - type: ndcg_at_10
            value: 56.904999999999994
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB IFlyTek
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
          split: validation
          type: C-MTEB/IFlyTek-classification
        metrics:
          - type: accuracy
            value: 44.59407464409388
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 74.912
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB JDReview
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
          split: test
          type: C-MTEB/JDReview-classification
        metrics:
          - type: accuracy
            value: 79.26829268292683
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB LCQMC
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
          split: test
          type: C-MTEB/LCQMC
        metrics:
          - type: cos_sim_spearman
            value: 74.8601229809791
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB MLSUMClusteringP2P
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
          split: test
          type: mlsum
        metrics:
          - type: v_measure
            value: 42.331902754246556
          - type: v_measure
            value: 40.92029335502153
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MMarcoReranking
          revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
          split: dev
          type: C-MTEB/Mmarco-reranking
        metrics:
          - type: map
            value: 32.19266316591337
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: ndcg_at_10
            value: 79.346
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: c5a29a104738b98a9e76336939199e264163d4a0
          split: dev
          type: mteb/msmarco
        metrics:
          - type: ndcg_at_10
            value: 39.922999999999995
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MSMARCO-PL
          revision: 8634c07806d5cce3a6138e260e59b81760a0a640
          split: test
          type: clarin-knext/msmarco-pl
        metrics:
          - type: ndcg_at_10
            value: 55.620999999999995
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 92.53989968080255
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPDomainClassification (de)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 88.26993519301212
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPDomainClassification (es)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 90.87725150100067
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPDomainClassification (fr)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 87.48512370811149
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPDomainClassification (hi)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 89.45141627823591
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPDomainClassification (th)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 83.45750452079565
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 72.57637938896488
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MTOPIntentClassification (de)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 63.50803043110736
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MTOPIntentClassification (es)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 71.6577718478986
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPIntentClassification (fr)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 64.05887879736925
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MTOPIntentClassification (hi)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 65.27070634636071
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MTOPIntentClassification (th)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 63.04520795660037
        task:
          type: Classification
      - dataset:
          config: fra
          name: MTEB MasakhaNEWSClassification (fra)
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
          split: test
          type: masakhane/masakhanews
        metrics:
          - type: accuracy
            value: 80.66350710900474
        task:
          type: Classification
      - dataset:
          config: fra
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
          split: test
          type: masakhane/masakhanews
        metrics:
          - type: v_measure
            value: 44.016506455899425
          - type: v_measure
            value: 40.67730129573544
        task:
          type: Clustering
      - dataset:
          config: af
          name: MTEB MassiveIntentClassification (af)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 57.94552790854068
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveIntentClassification (am)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 49.273705447209146
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveIntentClassification (ar)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 55.490921318090116
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveIntentClassification (az)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.97511768661733
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveIntentClassification (bn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 57.5689307330195
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveIntentClassification (cy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 48.34902488231337
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveIntentClassification (da)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.6684599865501
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveIntentClassification (de)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.54539340954942
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveIntentClassification (el)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.08675184936112
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 72.12508406186953
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveIntentClassification (es)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.41425689307331
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveIntentClassification (fa)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.59515803631474
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveIntentClassification (fi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 62.90517821116342
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveIntentClassification (fr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.91526563550774
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveIntentClassification (he)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 55.198386012104905
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveIntentClassification (hi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.04371217215869
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveIntentClassification (hu)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.31203765971756
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveIntentClassification (hy)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 55.521183591123055
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveIntentClassification (id)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.06254203093476
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveIntentClassification (is)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 56.01546738399461
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveIntentClassification (it)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.27975790181574
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveIntentClassification (ja)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.79556153328849
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveIntentClassification (jv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 50.18493611297915
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveIntentClassification (ka)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 47.888365837256224
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveIntentClassification (km)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 50.79690652320108
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveIntentClassification (kn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 57.225958305312716
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveIntentClassification (ko)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.58641560188299
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveIntentClassification (lv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 59.08204438466711
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveIntentClassification (ml)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 59.54606590450572
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveIntentClassification (mn)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 53.443174176193665
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveIntentClassification (ms)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.65097511768661
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveIntentClassification (my)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 53.45662407531944
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveIntentClassification (nb)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.739071956960316
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveIntentClassification (nl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.36180228648286
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveIntentClassification (pl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 66.3920645595158
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveIntentClassification (pt)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 68.06993947545395
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveIntentClassification (ro)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 63.123739071956955
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveIntentClassification (ru)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 67.46133154001346
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveIntentClassification (sl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.54472091459314
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveIntentClassification (sq)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.204438466711494
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveIntentClassification (sv)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 65.69603227975792
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveIntentClassification (sw)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 51.684599865501
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveIntentClassification (ta)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.523873570948226
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveIntentClassification (te)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.53396099529253
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveIntentClassification (th)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 61.88298587760591
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveIntentClassification (tl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 56.65097511768662
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveIntentClassification (tr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.8453261600538
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveIntentClassification (ur)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 58.6247478143914
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveIntentClassification (vi)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.16274377942166
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 69.61667787491594
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveIntentClassification (zh-TW)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 64.17283120376598
        task:
          type: Classification
      - dataset:
          config: af
          name: MTEB MassiveScenarioClassification (af)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 64.89912575655683
        task:
          type: Classification
      - dataset:
          config: am
          name: MTEB MassiveScenarioClassification (am)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 57.27975790181573
        task:
          type: Classification
      - dataset:
          config: ar
          name: MTEB MassiveScenarioClassification (ar)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.269670477471415
        task:
          type: Classification
      - dataset:
          config: az
          name: MTEB MassiveScenarioClassification (az)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 65.10423671822461
        task:
          type: Classification
      - dataset:
          config: bn
          name: MTEB MassiveScenarioClassification (bn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.40753194351043
        task:
          type: Classification
      - dataset:
          config: cy
          name: MTEB MassiveScenarioClassification (cy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 55.369872225958304
        task:
          type: Classification
      - dataset:
          config: da
          name: MTEB MassiveScenarioClassification (da)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.60726294552792
        task:
          type: Classification
      - dataset:
          config: de
          name: MTEB MassiveScenarioClassification (de)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.30262273032952
        task:
          type: Classification
      - dataset:
          config: el
          name: MTEB MassiveScenarioClassification (el)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.52925353059851
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 76.28446536650976
        task:
          type: Classification
      - dataset:
          config: es
          name: MTEB MassiveScenarioClassification (es)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.45460659045058
        task:
          type: Classification
      - dataset:
          config: fa
          name: MTEB MassiveScenarioClassification (fa)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.26563550773368
        task:
          type: Classification
      - dataset:
          config: fi
          name: MTEB MassiveScenarioClassification (fi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.20578345662408
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveScenarioClassification (fr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.64963012777405
        task:
          type: Classification
      - dataset:
          config: he
          name: MTEB MassiveScenarioClassification (he)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 61.698049764626774
        task:
          type: Classification
      - dataset:
          config: hi
          name: MTEB MassiveScenarioClassification (hi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.14458641560188
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveScenarioClassification (hu)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.51445864156018
        task:
          type: Classification
      - dataset:
          config: hy
          name: MTEB MassiveScenarioClassification (hy)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 60.13786146603901
        task:
          type: Classification
      - dataset:
          config: id
          name: MTEB MassiveScenarioClassification (id)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.61533288500337
        task:
          type: Classification
      - dataset:
          config: is
          name: MTEB MassiveScenarioClassification (is)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 61.526563550773375
        task:
          type: Classification
      - dataset:
          config: it
          name: MTEB MassiveScenarioClassification (it)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.99731002017484
        task:
          type: Classification
      - dataset:
          config: ja
          name: MTEB MassiveScenarioClassification (ja)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.59381304640216
        task:
          type: Classification
      - dataset:
          config: jv
          name: MTEB MassiveScenarioClassification (jv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 57.010759919300604
        task:
          type: Classification
      - dataset:
          config: ka
          name: MTEB MassiveScenarioClassification (ka)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 53.26160053799597
        task:
          type: Classification
      - dataset:
          config: km
          name: MTEB MassiveScenarioClassification (km)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 57.800941492938804
        task:
          type: Classification
      - dataset:
          config: kn
          name: MTEB MassiveScenarioClassification (kn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.387357094821795
        task:
          type: Classification
      - dataset:
          config: ko
          name: MTEB MassiveScenarioClassification (ko)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 69.5359784801614
        task:
          type: Classification
      - dataset:
          config: lv
          name: MTEB MassiveScenarioClassification (lv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.36919973100203
        task:
          type: Classification
      - dataset:
          config: ml
          name: MTEB MassiveScenarioClassification (ml)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 64.81506388702084
        task:
          type: Classification
      - dataset:
          config: mn
          name: MTEB MassiveScenarioClassification (mn)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 59.35104236718225
        task:
          type: Classification
      - dataset:
          config: ms
          name: MTEB MassiveScenarioClassification (ms)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.67787491593813
        task:
          type: Classification
      - dataset:
          config: my
          name: MTEB MassiveScenarioClassification (my)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 59.4250168123739
        task:
          type: Classification
      - dataset:
          config: nb
          name: MTEB MassiveScenarioClassification (nb)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.49630127774043
        task:
          type: Classification
      - dataset:
          config: nl
          name: MTEB MassiveScenarioClassification (nl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.95696032279758
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveScenarioClassification (pl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.11768661735036
        task:
          type: Classification
      - dataset:
          config: pt
          name: MTEB MassiveScenarioClassification (pt)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.86953597848016
        task:
          type: Classification
      - dataset:
          config: ro
          name: MTEB MassiveScenarioClassification (ro)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 68.51042367182247
        task:
          type: Classification
      - dataset:
          config: ru
          name: MTEB MassiveScenarioClassification (ru)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.65097511768661
        task:
          type: Classification
      - dataset:
          config: sl
          name: MTEB MassiveScenarioClassification (sl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.81573638197713
        task:
          type: Classification
      - dataset:
          config: sq
          name: MTEB MassiveScenarioClassification (sq)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 65.26227303295225
        task:
          type: Classification
      - dataset:
          config: sv
          name: MTEB MassiveScenarioClassification (sv)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 72.51513113651646
        task:
          type: Classification
      - dataset:
          config: sw
          name: MTEB MassiveScenarioClassification (sw)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 58.29858776059179
        task:
          type: Classification
      - dataset:
          config: ta
          name: MTEB MassiveScenarioClassification (ta)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 62.72696704774714
        task:
          type: Classification
      - dataset:
          config: te
          name: MTEB MassiveScenarioClassification (te)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.57700067249496
        task:
          type: Classification
      - dataset:
          config: th
          name: MTEB MassiveScenarioClassification (th)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 68.22797579018157
        task:
          type: Classification
      - dataset:
          config: tl
          name: MTEB MassiveScenarioClassification (tl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 61.97041022192333
        task:
          type: Classification
      - dataset:
          config: tr
          name: MTEB MassiveScenarioClassification (tr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 70.72629455279085
        task:
          type: Classification
      - dataset:
          config: ur
          name: MTEB MassiveScenarioClassification (ur)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 63.16072629455278
        task:
          type: Classification
      - dataset:
          config: vi
          name: MTEB MassiveScenarioClassification (vi)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 67.92199058507062
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 74.40484196368527
        task:
          type: Classification
      - dataset:
          config: zh-TW
          name: MTEB MassiveScenarioClassification (zh-TW)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 71.61398789509079
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedicalRetrieval
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: ndcg_at_10
            value: 61.934999999999995
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 33.052031054565205
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 31.969909524076794
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 31.7530992892652
        task:
          type: Reranking
      - dataset:
          config: fr
          name: MTEB MintakaRetrieval (fr)
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
          split: test
          type: jinaai/mintakaqa
        metrics:
          - type: ndcg_at_10
            value: 34.705999999999996
        task:
          type: Retrieval
      - dataset:
          config: ar
          name: MTEB MultiLongDocRetrieval (ar)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 55.166000000000004
        task:
          type: Retrieval
      - dataset:
          config: de
          name: MTEB MultiLongDocRetrieval (de)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 55.155
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MultiLongDocRetrieval (en)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 50.993
        task:
          type: Retrieval
      - dataset:
          config: es
          name: MTEB MultiLongDocRetrieval (es)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 81.228
        task:
          type: Retrieval
      - dataset:
          config: fr
          name: MTEB MultiLongDocRetrieval (fr)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 76.19
        task:
          type: Retrieval
      - dataset:
          config: hi
          name: MTEB MultiLongDocRetrieval (hi)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 45.206
        task:
          type: Retrieval
      - dataset:
          config: it
          name: MTEB MultiLongDocRetrieval (it)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 66.741
        task:
          type: Retrieval
      - dataset:
          config: ja
          name: MTEB MultiLongDocRetrieval (ja)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 52.111
        task:
          type: Retrieval
      - dataset:
          config: ko
          name: MTEB MultiLongDocRetrieval (ko)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 46.733000000000004
        task:
          type: Retrieval
      - dataset:
          config: pt
          name: MTEB MultiLongDocRetrieval (pt)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 79.105
        task:
          type: Retrieval
      - dataset:
          config: ru
          name: MTEB MultiLongDocRetrieval (ru)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 64.21
        task:
          type: Retrieval
      - dataset:
          config: th
          name: MTEB MultiLongDocRetrieval (th)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 35.467
        task:
          type: Retrieval
      - dataset:
          config: zh
          name: MTEB MultiLongDocRetrieval (zh)
          revision: None
          split: test
          type: Shitao/MLDR
        metrics:
          - type: ndcg_at_10
            value: 27.419
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MultilingualSentiment
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
          split: validation
          type: C-MTEB/MultilingualSentiment-classification
        metrics:
          - type: accuracy
            value: 61.02000000000001
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
          split: test
          type: mteb/nfcorpus
        metrics:
          - type: ndcg_at_10
            value: 36.65
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NFCorpus-PL
          revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
          split: test
          type: clarin-knext/nfcorpus-pl
        metrics:
          - type: ndcg_at_10
            value: 26.831
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
          split: test
          type: mteb/nq
        metrics:
          - type: ndcg_at_10
            value: 58.111000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ-PL
          revision: f171245712cf85dd4700b06bef18001578d0ca8d
          split: test
          type: clarin-knext/nq-pl
        metrics:
          - type: ndcg_at_10
            value: 43.126999999999995
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Ocnli
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
          split: validation
          type: C-MTEB/OCNLI
        metrics:
          - type: cos_sim_ap
            value: 72.67630697316041
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB OnlineShopping
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
          split: test
          type: C-MTEB/OnlineShopping-classification
        metrics:
          - type: accuracy
            value: 84.85000000000001
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB OpusparcusPC (fr)
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
          split: test
          type: GEM/opusparcus
        metrics:
          - type: cos_sim_ap
            value: 100
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB PAC
          revision: None
          split: test
          type: laugustyniak/abusive-clauses-pl
        metrics:
          - type: accuracy
            value: 65.99189110918043
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PAWSX
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
          split: test
          type: C-MTEB/PAWSX
        metrics:
          - type: cos_sim_spearman
            value: 16.124364530596228
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB PPC
          revision: None
          split: test
          type: PL-MTEB/ppc-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 92.43431057460192
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB PSC
          revision: None
          split: test
          type: PL-MTEB/psc-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 99.06090138049724
        task:
          type: PairClassification
      - dataset:
          config: fr
          name: MTEB PawsX (fr)
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
          split: test
          type: paws-x
        metrics:
          - type: cos_sim_ap
            value: 58.9314954874314
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB PolEmo2.0-IN
          revision: None
          split: test
          type: PL-MTEB/polemo2_in
        metrics:
          - type: accuracy
            value: 69.59833795013851
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PolEmo2.0-OUT
          revision: None
          split: test
          type: PL-MTEB/polemo2_out
        metrics:
          - type: accuracy
            value: 44.73684210526315
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB QBQTC
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
          split: test
          type: C-MTEB/QBQTC
        metrics:
          - type: cos_sim_spearman
            value: 39.36450754137984
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB Quora-PL
          revision: 0be27e93455051e531182b85e85e425aba12e9d4
          split: test
          type: clarin-knext/quora-pl
        metrics:
          - type: ndcg_at_10
            value: 80.76299999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: mteb/quora
        metrics:
          - type: ndcg_at_10
            value: 88.022
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: v_measure
            value: 55.719165988934385
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: v_measure
            value: 62.25390069273025
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: mteb/scidocs
        metrics:
          - type: ndcg_at_10
            value: 18.243000000000002
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SCIDOCS-PL
          revision: 45452b03f05560207ef19149545f168e596c9337
          split: test
          type: clarin-knext/scidocs-pl
        metrics:
          - type: ndcg_at_10
            value: 14.219000000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-E-PL
          revision: None
          split: test
          type: PL-MTEB/sicke-pl-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 75.4022630307816
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cos_sim_spearman
            value: 79.34269390198548
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SICK-R-PL
          revision: None
          split: test
          type: PL-MTEB/sickr-pl-sts
        metrics:
          - type: cos_sim_spearman
            value: 74.0651660446132
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SICKFr
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
          split: test
          type: Lajavaness/SICK-fr
        metrics:
          - type: cos_sim_spearman
            value: 78.62693119733123
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cos_sim_spearman
            value: 77.50660544631359
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cos_sim_spearman
            value: 85.55415077723738
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cos_sim_spearman
            value: 81.67550814479077
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cos_sim_spearman
            value: 88.94601412322764
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cos_sim_spearman
            value: 84.33844259337481
        task:
          type: STS
      - dataset:
          config: ko-ko
          name: MTEB STS17 (ko-ko)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 81.58650681159105
        task:
          type: STS
      - dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 78.82472265884256
        task:
          type: STS
      - dataset:
          config: en-ar
          name: MTEB STS17 (en-ar)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 76.43637938260397
        task:
          type: STS
      - dataset:
          config: en-de
          name: MTEB STS17 (en-de)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 84.71008299464059
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 88.88074713413747
        task:
          type: STS
      - dataset:
          config: en-tr
          name: MTEB STS17 (en-tr)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 76.36405640457285
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS17 (es-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 83.84737910084762
        task:
          type: STS
      - dataset:
          config: es-es
          name: MTEB STS17 (es-es)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 87.03931621433031
        task:
          type: STS
      - dataset:
          config: fr-en
          name: MTEB STS17 (fr-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 84.43335591752246
        task:
          type: STS
      - dataset:
          config: it-en
          name: MTEB STS17 (it-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 83.85268648747021
        task:
          type: STS
      - dataset:
          config: nl-en
          name: MTEB STS17 (nl-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 82.45786516224341
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 67.20227303970304
        task:
          type: STS
      - dataset:
          config: de
          name: MTEB STS22 (de)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 60.892838305537126
        task:
          type: STS
      - dataset:
          config: es
          name: MTEB STS22 (es)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 72.01876318464508
        task:
          type: STS
      - dataset:
          config: pl
          name: MTEB STS22 (pl)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 42.3879320510127
        task:
          type: STS
      - dataset:
          config: tr
          name: MTEB STS22 (tr)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 65.54048784845729
        task:
          type: STS
      - dataset:
          config: ar
          name: MTEB STS22 (ar)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 58.55244068334867
        task:
          type: STS
      - dataset:
          config: ru
          name: MTEB STS22 (ru)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 66.48710288440624
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 66.585754901838
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STS22 (fr)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 81.03001290557805
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB STS22 (de-en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 62.28001859884359
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS22 (es-en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 79.64106342105019
        task:
          type: STS
      - dataset:
          config: it
          name: MTEB STS22 (it)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 78.27915339361124
        task:
          type: STS
      - dataset:
          config: pl-en
          name: MTEB STS22 (pl-en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 78.28574268257462
        task:
          type: STS
      - dataset:
          config: zh-en
          name: MTEB STS22 (zh-en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 72.92658860751482
        task:
          type: STS
      - dataset:
          config: es-it
          name: MTEB STS22 (es-it)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 74.83418886368217
        task:
          type: STS
      - dataset:
          config: de-fr
          name: MTEB STS22 (de-fr)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 56.01064022625769
        task:
          type: STS
      - dataset:
          config: de-pl
          name: MTEB STS22 (de-pl)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 53.64332829635126
        task:
          type: STS
      - dataset:
          config: fr-pl
          name: MTEB STS22 (fr-pl)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_spearman
            value: 73.24670207647144
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSB
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
          split: test
          type: C-MTEB/STSB
        metrics:
          - type: cos_sim_spearman
            value: 80.7157790971544
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cos_sim_spearman
            value: 86.45763616928973
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
          split: test
          type: stsb_multi_mt
        metrics:
          - type: cos_sim_spearman
            value: 84.4335500335282
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 84.15276484499303
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
          split: test
          type: mteb/scifact
        metrics:
          - type: ndcg_at_10
            value: 73.433
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SciFact-PL
          revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
          split: test
          type: clarin-knext/scifact-pl
        metrics:
          - type: ndcg_at_10
            value: 58.919999999999995
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 95.40564890916419
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: v_measure
            value: 63.41856697730145
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: v_measure
            value: 31.709285904909112
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 52.09341030060322
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cos_sim_spearman
            value: 30.58262517835034
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB SummEvalFr
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
          split: test
          type: lyon-nlp/summarization-summeval-fr-p2p
        metrics:
          - type: cos_sim_spearman
            value: 29.744542072951358
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB SyntecReranking
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
          split: test
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
        metrics:
          - type: map
            value: 88.03333333333333
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SyntecRetrieval
          revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
          split: test
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
        metrics:
          - type: ndcg_at_10
            value: 83.043
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB T2Reranking
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
          split: dev
          type: C-MTEB/T2Reranking
        metrics:
          - type: map
            value: 67.08577894804324
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB T2Retrieval
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: ndcg_at_10
            value: 84.718
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TNews
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
          split: validation
          type: C-MTEB/TNews-classification
        metrics:
          - type: accuracy
            value: 48.726
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: mteb/trec-covid
        metrics:
          - type: ndcg_at_10
            value: 57.56
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TRECCOVID-PL
          revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
          split: test
          type: clarin-knext/trec-covid-pl
        metrics:
          - type: ndcg_at_10
            value: 59.355999999999995
        task:
          type: Retrieval
      - dataset:
          config: sqi-eng
          name: MTEB Tatoeba (sqi-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 82.765
        task:
          type: BitextMining
      - dataset:
          config: fry-eng
          name: MTEB Tatoeba (fry-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 73.69942196531792
        task:
          type: BitextMining
      - dataset:
          config: kur-eng
          name: MTEB Tatoeba (kur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 32.86585365853657
        task:
          type: BitextMining
      - dataset:
          config: tur-eng
          name: MTEB Tatoeba (tur-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 95.81666666666666
        task:
          type: BitextMining
      - dataset:
          config: deu-eng
          name: MTEB Tatoeba (deu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 97.75
        task:
          type: BitextMining
      - dataset:
          config: nld-eng
          name: MTEB Tatoeba (nld-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 93.78333333333335
        task:
          type: BitextMining
      - dataset:
          config: ron-eng
          name: MTEB Tatoeba (ron-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 90.72333333333333
        task:
          type: BitextMining
      - dataset:
          config: ang-eng
          name: MTEB Tatoeba (ang-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 42.45202558635395
        task:
          type: BitextMining
      - dataset:
          config: ido-eng
          name: MTEB Tatoeba (ido-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 77.59238095238095
        task:
          type: BitextMining
      - dataset:
          config: jav-eng
          name: MTEB Tatoeba (jav-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 35.69686411149825
        task:
          type: BitextMining
      - dataset:
          config: isl-eng
          name: MTEB Tatoeba (isl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 82.59333333333333
        task:
          type: BitextMining
      - dataset:
          config: slv-eng
          name: MTEB Tatoeba (slv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 84.1456922987907
        task:
          type: BitextMining
      - dataset:
          config: cym-eng
          name: MTEB Tatoeba (cym-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 52.47462133594857
        task:
          type: BitextMining
      - dataset:
          config: kaz-eng
          name: MTEB Tatoeba (kaz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 67.62965440356746
        task:
          type: BitextMining
      - dataset:
          config: est-eng
          name: MTEB Tatoeba (est-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 79.48412698412699
        task:
          type: BitextMining
      - dataset:
          config: heb-eng
          name: MTEB Tatoeba (heb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 75.85
        task:
          type: BitextMining
      - dataset:
          config: gla-eng
          name: MTEB Tatoeba (gla-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 27.32600866497127
        task:
          type: BitextMining
      - dataset:
          config: mar-eng
          name: MTEB Tatoeba (mar-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 84.38
        task:
          type: BitextMining
      - dataset:
          config: lat-eng
          name: MTEB Tatoeba (lat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 42.98888712165028
        task:
          type: BitextMining
      - dataset:
          config: bel-eng
          name: MTEB Tatoeba (bel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 85.55690476190476
        task:
          type: BitextMining
      - dataset:
          config: pms-eng
          name: MTEB Tatoeba (pms-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 46.68466031323174
        task:
          type: BitextMining
      - dataset:
          config: gle-eng
          name: MTEB Tatoeba (gle-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 32.73071428571428
        task:
          type: BitextMining
      - dataset:
          config: pes-eng
          name: MTEB Tatoeba (pes-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 88.26333333333334
        task:
          type: BitextMining
      - dataset:
          config: nob-eng
          name: MTEB Tatoeba (nob-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 96.61666666666666
        task:
          type: BitextMining
      - dataset:
          config: bul-eng
          name: MTEB Tatoeba (bul-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.30666666666666
        task:
          type: BitextMining
      - dataset:
          config: cbk-eng
          name: MTEB Tatoeba (cbk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 70.03714285714285
        task:
          type: BitextMining
      - dataset:
          config: hun-eng
          name: MTEB Tatoeba (hun-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 89.09
        task:
          type: BitextMining
      - dataset:
          config: uig-eng
          name: MTEB Tatoeba (uig-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 59.570476190476185
        task:
          type: BitextMining
      - dataset:
          config: rus-eng
          name: MTEB Tatoeba (rus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 92.9
        task:
          type: BitextMining
      - dataset:
          config: spa-eng
          name: MTEB Tatoeba (spa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 97.68333333333334
        task:
          type: BitextMining
      - dataset:
          config: hye-eng
          name: MTEB Tatoeba (hye-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 80.40880503144653
        task:
          type: BitextMining
      - dataset:
          config: tel-eng
          name: MTEB Tatoeba (tel-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 89.7008547008547
        task:
          type: BitextMining
      - dataset:
          config: afr-eng
          name: MTEB Tatoeba (afr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 81.84833333333333
        task:
          type: BitextMining
      - dataset:
          config: mon-eng
          name: MTEB Tatoeba (mon-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 71.69696969696969
        task:
          type: BitextMining
      - dataset:
          config: arz-eng
          name: MTEB Tatoeba (arz-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 55.76985790822269
        task:
          type: BitextMining
      - dataset:
          config: hrv-eng
          name: MTEB Tatoeba (hrv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.66666666666666
        task:
          type: BitextMining
      - dataset:
          config: nov-eng
          name: MTEB Tatoeba (nov-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 68.36668519547896
        task:
          type: BitextMining
      - dataset:
          config: gsw-eng
          name: MTEB Tatoeba (gsw-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 36.73992673992674
        task:
          type: BitextMining
      - dataset:
          config: nds-eng
          name: MTEB Tatoeba (nds-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 63.420952380952365
        task:
          type: BitextMining
      - dataset:
          config: ukr-eng
          name: MTEB Tatoeba (ukr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.28999999999999
        task:
          type: BitextMining
      - dataset:
          config: uzb-eng
          name: MTEB Tatoeba (uzb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 40.95392490046146
        task:
          type: BitextMining
      - dataset:
          config: lit-eng
          name: MTEB Tatoeba (lit-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 77.58936507936508
        task:
          type: BitextMining
      - dataset:
          config: ina-eng
          name: MTEB Tatoeba (ina-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.28999999999999
        task:
          type: BitextMining
      - dataset:
          config: lfn-eng
          name: MTEB Tatoeba (lfn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 63.563650793650794
        task:
          type: BitextMining
      - dataset:
          config: zsm-eng
          name: MTEB Tatoeba (zsm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 94.35
        task:
          type: BitextMining
      - dataset:
          config: ita-eng
          name: MTEB Tatoeba (ita-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.43
        task:
          type: BitextMining
      - dataset:
          config: cmn-eng
          name: MTEB Tatoeba (cmn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 95.73333333333332
        task:
          type: BitextMining
      - dataset:
          config: lvs-eng
          name: MTEB Tatoeba (lvs-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 79.38666666666667
        task:
          type: BitextMining
      - dataset:
          config: glg-eng
          name: MTEB Tatoeba (glg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 89.64
        task:
          type: BitextMining
      - dataset:
          config: ceb-eng
          name: MTEB Tatoeba (ceb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 21.257184628237262
        task:
          type: BitextMining
      - dataset:
          config: bre-eng
          name: MTEB Tatoeba (bre-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 13.592316017316017
        task:
          type: BitextMining
      - dataset:
          config: ben-eng
          name: MTEB Tatoeba (ben-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 73.22666666666666
        task:
          type: BitextMining
      - dataset:
          config: swg-eng
          name: MTEB Tatoeba (swg-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 51.711309523809526
        task:
          type: BitextMining
      - dataset:
          config: arq-eng
          name: MTEB Tatoeba (arq-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 24.98790634904795
        task:
          type: BitextMining
      - dataset:
          config: kab-eng
          name: MTEB Tatoeba (kab-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 17.19218192918193
        task:
          type: BitextMining
      - dataset:
          config: fra-eng
          name: MTEB Tatoeba (fra-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 93.26666666666667
        task:
          type: BitextMining
      - dataset:
          config: por-eng
          name: MTEB Tatoeba (por-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 94.57333333333334
        task:
          type: BitextMining
      - dataset:
          config: tat-eng
          name: MTEB Tatoeba (tat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 42.35127206127206
        task:
          type: BitextMining
      - dataset:
          config: oci-eng
          name: MTEB Tatoeba (oci-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 51.12318903318903
        task:
          type: BitextMining
      - dataset:
          config: pol-eng
          name: MTEB Tatoeba (pol-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 94.89999999999999
        task:
          type: BitextMining
      - dataset:
          config: war-eng
          name: MTEB Tatoeba (war-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 23.856320290390055
        task:
          type: BitextMining
      - dataset:
          config: aze-eng
          name: MTEB Tatoeba (aze-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 79.52833333333334
        task:
          type: BitextMining
      - dataset:
          config: vie-eng
          name: MTEB Tatoeba (vie-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 95.93333333333334
        task:
          type: BitextMining
      - dataset:
          config: nno-eng
          name: MTEB Tatoeba (nno-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 90.75333333333333
        task:
          type: BitextMining
      - dataset:
          config: cha-eng
          name: MTEB Tatoeba (cha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 30.802919708029197
        task:
          type: BitextMining
      - dataset:
          config: mhr-eng
          name: MTEB Tatoeba (mhr-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 15.984076294076294
        task:
          type: BitextMining
      - dataset:
          config: dan-eng
          name: MTEB Tatoeba (dan-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.82666666666667
        task:
          type: BitextMining
      - dataset:
          config: ell-eng
          name: MTEB Tatoeba (ell-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.9
        task:
          type: BitextMining
      - dataset:
          config: amh-eng
          name: MTEB Tatoeba (amh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 76.36054421768706
        task:
          type: BitextMining
      - dataset:
          config: pam-eng
          name: MTEB Tatoeba (pam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 9.232711399711398
        task:
          type: BitextMining
      - dataset:
          config: hsb-eng
          name: MTEB Tatoeba (hsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 45.640803181175855
        task:
          type: BitextMining
      - dataset:
          config: srp-eng
          name: MTEB Tatoeba (srp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 86.29
        task:
          type: BitextMining
      - dataset:
          config: epo-eng
          name: MTEB Tatoeba (epo-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 88.90833333333332
        task:
          type: BitextMining
      - dataset:
          config: kzj-eng
          name: MTEB Tatoeba (kzj-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 11.11880248978075
        task:
          type: BitextMining
      - dataset:
          config: awa-eng
          name: MTEB Tatoeba (awa-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 48.45839345839346
        task:
          type: BitextMining
      - dataset:
          config: fao-eng
          name: MTEB Tatoeba (fao-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 65.68157033805888
        task:
          type: BitextMining
      - dataset:
          config: mal-eng
          name: MTEB Tatoeba (mal-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 94.63852498786997
        task:
          type: BitextMining
      - dataset:
          config: ile-eng
          name: MTEB Tatoeba (ile-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 81.67904761904761
        task:
          type: BitextMining
      - dataset:
          config: bos-eng
          name: MTEB Tatoeba (bos-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 89.35969868173258
        task:
          type: BitextMining
      - dataset:
          config: cor-eng
          name: MTEB Tatoeba (cor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 5.957229437229437
        task:
          type: BitextMining
      - dataset:
          config: cat-eng
          name: MTEB Tatoeba (cat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 91.50333333333333
        task:
          type: BitextMining
      - dataset:
          config: eus-eng
          name: MTEB Tatoeba (eus-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 63.75498778998778
        task:
          type: BitextMining
      - dataset:
          config: yue-eng
          name: MTEB Tatoeba (yue-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 82.99190476190476
        task:
          type: BitextMining
      - dataset:
          config: swe-eng
          name: MTEB Tatoeba (swe-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 92.95
        task:
          type: BitextMining
      - dataset:
          config: dtp-eng
          name: MTEB Tatoeba (dtp-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 9.054042624042623
        task:
          type: BitextMining
      - dataset:
          config: kat-eng
          name: MTEB Tatoeba (kat-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 72.77064981488574
        task:
          type: BitextMining
      - dataset:
          config: jpn-eng
          name: MTEB Tatoeba (jpn-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 93.14
        task:
          type: BitextMining
      - dataset:
          config: csb-eng
          name: MTEB Tatoeba (csb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 29.976786498525627
        task:
          type: BitextMining
      - dataset:
          config: xho-eng
          name: MTEB Tatoeba (xho-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 67.6525821596244
        task:
          type: BitextMining
      - dataset:
          config: orv-eng
          name: MTEB Tatoeba (orv-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 33.12964812964813
        task:
          type: BitextMining
      - dataset:
          config: ind-eng
          name: MTEB Tatoeba (ind-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 92.30666666666666
        task:
          type: BitextMining
      - dataset:
          config: tuk-eng
          name: MTEB Tatoeba (tuk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 34.36077879427633
        task:
          type: BitextMining
      - dataset:
          config: max-eng
          name: MTEB Tatoeba (max-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 52.571845212690285
        task:
          type: BitextMining
      - dataset:
          config: swh-eng
          name: MTEB Tatoeba (swh-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 58.13107263107262
        task:
          type: BitextMining
      - dataset:
          config: hin-eng
          name: MTEB Tatoeba (hin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 93.33333333333333
        task:
          type: BitextMining
      - dataset:
          config: dsb-eng
          name: MTEB Tatoeba (dsb-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 42.87370133925458
        task:
          type: BitextMining
      - dataset:
          config: ber-eng
          name: MTEB Tatoeba (ber-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 20.394327616827614
        task:
          type: BitextMining
      - dataset:
          config: tam-eng
          name: MTEB Tatoeba (tam-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 84.29967426710098
        task:
          type: BitextMining
      - dataset:
          config: slk-eng
          name: MTEB Tatoeba (slk-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 88.80666666666667
        task:
          type: BitextMining
      - dataset:
          config: tgl-eng
          name: MTEB Tatoeba (tgl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 67.23062271062273
        task:
          type: BitextMining
      - dataset:
          config: ast-eng
          name: MTEB Tatoeba (ast-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 78.08398950131233
        task:
          type: BitextMining
      - dataset:
          config: mkd-eng
          name: MTEB Tatoeba (mkd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 77.85166666666666
        task:
          type: BitextMining
      - dataset:
          config: khm-eng
          name: MTEB Tatoeba (khm-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 67.63004001231148
        task:
          type: BitextMining
      - dataset:
          config: ces-eng
          name: MTEB Tatoeba (ces-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 89.77000000000001
        task:
          type: BitextMining
      - dataset:
          config: tzl-eng
          name: MTEB Tatoeba (tzl-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 40.2654503616042
        task:
          type: BitextMining
      - dataset:
          config: urd-eng
          name: MTEB Tatoeba (urd-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 83.90333333333334
        task:
          type: BitextMining
      - dataset:
          config: ara-eng
          name: MTEB Tatoeba (ara-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 77.80666666666666
        task:
          type: BitextMining
      - dataset:
          config: kor-eng
          name: MTEB Tatoeba (kor-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 84.08
        task:
          type: BitextMining
      - dataset:
          config: yid-eng
          name: MTEB Tatoeba (yid-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 60.43098607367475
        task:
          type: BitextMining
      - dataset:
          config: fin-eng
          name: MTEB Tatoeba (fin-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 88.19333333333333
        task:
          type: BitextMining
      - dataset:
          config: tha-eng
          name: MTEB Tatoeba (tha-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 90.55352798053529
        task:
          type: BitextMining
      - dataset:
          config: wuu-eng
          name: MTEB Tatoeba (wuu-eng)
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: f1
            value: 88.44999999999999
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringP2P
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
          split: test
          type: C-MTEB/ThuNewsClusteringP2P
        metrics:
          - type: v_measure
            value: 57.25416429643288
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringS2S
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
          split: test
          type: C-MTEB/ThuNewsClusteringS2S
        metrics:
          - type: v_measure
            value: 56.616646560243524
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
          split: test
          type: mteb/touche2020
        metrics:
          - type: ndcg_at_10
            value: 22.819
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 71.02579999999999
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 57.60045274476514
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: v_measure
            value: 50.346666699466205
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 71.88199004440489
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_ap
            value: 85.41587779677383
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB VideoRetrieval
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: ndcg_at_10
            value: 72.792
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Waimai
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
          split: test
          type: C-MTEB/waimai-classification
        metrics:
          - type: accuracy
            value: 82.58000000000001
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB XPQARetrieval (fr)
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
          split: test
          type: jinaai/xpqa
        metrics:
          - type: ndcg_at_10
            value: 67.327
        task:
          type: Retrieval
tags:
  - mteb
  - multilingual
  - sentence-similarity
  - onnx
  - teradata

See Disclaimer below


A Teradata Vantage compatible Embeddings Model

Alibaba-NLP/gte-multilingual-base

Overview of this Model

An Embedding Model which maps text (sentence/ paragraphs) into a vector. The Alibaba-NLP/gte-multilingual-base model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings.

  • 305.37M params (Sizes in ONNX format - "fp32": 1197.36MB, "int8": 324.17MB, "uint8": 324.17MB)
  • 8192 maximum input tokens
  • 768 dimensions of output vector
  • Licence: apache-2.0. The released models can be used for commercial purposes free of charge.
  • Reference to Original Model: https://huggingface.co./Alibaba-NLP/gte-multilingual-base

Quickstart: Deploying this Model in Teradata Vantage

We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion.

Note: Ensure you have access to a Teradata Database with BYOM 6.0 installed.

To get started, clone the pre-converted model directly from the Teradata HuggingFace repository.


import teradataml as tdml
import getpass
from huggingface_hub import hf_hub_download

model_name = "gte-multilingual-base"
number_dimensions_output = 768
model_file_name = "model.onnx"

# Step 1: Download Model from Teradata HuggingFace Page

hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./")
hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./")

# Step 2: Create Connection to Vantage

tdml.create_context(host = input('enter your hostname'), 
                    username=input('enter your username'), 
                    password = getpass.getpass("enter your password"))

# Step 3: Load Models into Vantage
# a) Embedding model
tdml.save_byom(model_id = model_name, # must be unique in the models table
               model_file = f"onnx/{model_file_name}",
               table_name = 'embeddings_models' )
# b) Tokenizer
tdml.save_byom(model_id = model_name, # must be unique in the models table
              model_file = 'tokenizer.json',
              table_name = 'embeddings_tokenizers') 

# Step 4: Test ONNXEmbeddings Function
# Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. 
# If it has got a different name, just rename it in a subquery/CTE.
input_table = "emails.emails"
embeddings_query = f"""
SELECT 
        *
from mldb.ONNXEmbeddings(
        on {input_table} as InputTable
        on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION
        on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION
        using
            Accumulate('id', 'txt') 
            ModelOutputTensor('sentence_embedding')
            EnableMemoryCheck('false')
            OutputFormat('FLOAT32({number_dimensions_output})')
            OverwriteCachedModel('true')
    ) a 
"""
DF_embeddings = tdml.DataFrame.from_query(embeddings_query)
DF_embeddings

What Can I Do with the Embeddings?

Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples:

Deep Dive into Model Conversion to ONNX

The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.

You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format.

Part 1. Importing and Converting Model using optimum

We start by importing the pre-trained Alibaba-NLP/gte-multilingual-base model from Hugging Face.

To enhance performance and ensure compatibility with various execution environments, we'll use the Optimum utility to convert the model into the ONNX (Open Neural Network Exchange) format.

After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage

We are generating ONNX files for multiple different precisions: fp32, int8, uint8

You can find the detailed conversion steps in the file convert.py

Part 2. Running the model in Python with onnxruntime & compare results

Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results.

If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database.

import onnxruntime as rt

from sentence_transformers.util import cos_sim
from sentence_transformers import SentenceTransformer

import transformers


sentences_1 = 'How is the weather today?'
sentences_2 = 'What is the current weather like today?'

# Calculate ONNX result
tokenizer = transformers.AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
predef_sess = rt.InferenceSession("onnx/model.onnx")

enc1 = tokenizer(sentences_1)
embeddings_1_onnx = predef_sess.run(None,     {"input_ids": [enc1.input_ids], 
     "attention_mask": [enc1.attention_mask]})

enc2 = tokenizer(sentences_2)
embeddings_2_onnx = predef_sess.run(None,     {"input_ids": [enc2.input_ids], 
     "attention_mask": [enc2.attention_mask]})


# Calculate embeddings with SentenceTransformer
model = SentenceTransformer(model_id, trust_remote_code=True)
embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True)
embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True)

# Compare results
print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0])))
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))

You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file test_local.py


DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata.

To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations.

While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws.

You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.