Usage

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained('TeraSpace/dialofred')
model = AutoModelForSeq2SeqLM.from_pretrained('TeraSpace/dialofred', device_map=device)# Add torch_dtype=torch.bfloat16 to use less memory
while True:
    text_inp = input("=>")
    lm_text=f'<SC1>- {text_inp}\n- <extra_id_0>'
    input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(model.device)
    # outputs=model.generate(input_ids=input_ids,
    #                                 max_length=200,
    #                                 eos_token_id=tokenizer.eos_token_id,
    #                                 early_stopping=True,
    #                                 do_sample=True,
    #                                 temperature=1.0,
    #                                 top_k=0,
    #                                 top_p=0.85)
    # outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True)
    outputs=model.generate(input_ids=input_ids,
                                    max_length=200,
                                    eos_token_id=tokenizer.eos_token_id,
                                    early_stopping=True,
                                    do_sample=True,
                                    temperature=0.7,
                                    top_k=0,
                                    top_p=0.8)
    
    print(tokenizer.decode(outputs[0][1:]))
Downloads last month
59
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.