Edit model card

Classifier_with_external_sets_05

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2840
  • Accuracy: 0.9627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9983 289 0.6833 0.7547
0.403 2.0 579 0.4286 0.7700
0.403 2.9983 868 0.5718 0.8196
0.1978 4.0 1158 0.3336 0.8813
0.1978 4.9983 1447 0.3455 0.8795
0.1523 6.0 1737 0.5141 0.8398
0.1371 6.9983 2026 0.2422 0.9291
0.1371 8.0 2316 0.1653 0.9486
0.1073 8.9983 2605 0.1606 0.9480
0.1073 10.0 2895 0.3522 0.8991
0.0966 10.9983 3184 0.2096 0.9309
0.0966 12.0 3474 0.1263 0.9664
0.0887 12.9983 3763 0.2030 0.9529
0.0935 14.0 4053 0.1045 0.9676
0.0935 14.9983 4342 0.1270 0.9664
0.0751 16.0 4632 0.1873 0.9596
0.0751 16.9983 4921 0.2181 0.9621
0.0644 18.0 5211 0.1207 0.9713
0.0589 18.9983 5500 0.3134 0.9315
0.0589 20.0 5790 0.2447 0.9505
0.0451 20.9983 6079 0.2650 0.9474
0.0451 22.0 6369 0.2205 0.9596
0.0414 22.9983 6658 0.1899 0.9657
0.0414 24.0 6948 0.2518 0.9590
0.0415 24.9983 7237 0.2175 0.9572
0.0358 26.0 7527 0.3080 0.9462
0.0358 26.9983 7816 0.2570 0.9474
0.0332 28.0 8106 0.2519 0.9554
0.0332 28.9983 8395 0.3117 0.9492
0.028 30.0 8685 0.3270 0.9517
0.028 30.9983 8974 0.2641 0.9602
0.0281 32.0 9264 0.2669 0.9615
0.0227 32.9983 9553 0.2558 0.9615
0.0227 34.0 9843 0.3255 0.9505
0.0218 34.9983 10132 0.3818 0.9431
0.0218 36.0 10422 0.2411 0.9657
0.0224 36.9983 10711 0.2391 0.9645
0.0201 38.0 11001 0.3097 0.9602
0.0201 38.9983 11290 0.3057 0.9590
0.0168 40.0 11580 0.2537 0.9621
0.0168 40.9983 11869 0.2661 0.9615
0.0171 42.0 12159 0.3151 0.9590
0.0171 42.9983 12448 0.2814 0.9621
0.0176 44.0 12738 0.2748 0.9633
0.0153 44.9983 13027 0.2950 0.9633
0.0153 46.0 13317 0.3171 0.9596
0.0133 46.9983 13606 0.2659 0.9633
0.0133 48.0 13896 0.3022 0.9633
0.0142 48.9983 14185 0.3028 0.9609
0.0142 49.9136 14450 0.2840 0.9627

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
435M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tensorride/Classifier_with_external_sets_05

Finetuned
(116)
this model