GTE-base Votum Case Law

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Tejasw1/votum-case-law-v1")
# Run inference
sentences = [
    'What role does the liquidator play in verifying the claims and charges of secured creditors during the liquidation of a corporate debtor?',
    "**1. Key Legal Issues and Holdings:**\n\n* **Priority of Charges:** The main legal issue is the priority of charges on the secured assets of the corporate debtor, Reid and Taylor India Ltd.\n* **Insolvency and Bankruptcy Code, 2016:** The court considered the provisions of the Insolvency and Bankruptcy Code, 2016, particularly Section 52 and Regulation 37 of the Insolvency and Bankruptcy Board of India (Liquidation Process) Regulations, 2016.\n* **Security Interest:** The court examined the security interest held by the applicant, Finquest Financial Solutions P. Ltd., and other financial creditors, including Edelweiss Asset Reconstruction Co. Ltd.\n* **Entitlement to Realize Security Interest:** The court held that the applicant is entitled to realize their security interest in the manner specified under Section 52(1)(b) read with Regulation 37 of the IBBI (Liquidation Process) Regulations, 2016.\n\n**2. Significant Facts of the Case:**\n\n* The applicant, Finquest Financial Solutions P. Ltd., is a secured creditor with a first pari passu charge on the immovable fixed assets of the corporate debtor.\n* Edelweiss Asset Reconstruction Co. Ltd. is also a secured creditor with a claim on the same assets.\n* The corporate debtor, Reid and Taylor India Ltd., has been under liquidation.\n* Suit No. 84 of 2013 is pending in the Civil Judge (Senior Division), Nanjangud, challenging the first charge created by IDM.\n* The liquidator has verified the documents and found that the applicant is the sole first charge holder of the immovable property of the corporate debtor at Mysore.\n* The Edelweiss had not obtained an NOC from the IDM and had not ventilated their grievance or enforced their rights before any forum.\n\n**3. Court's Ruling:**\n\n* The court ruled that the applicant, Finquest Financial Solutions P. Ltd., is entitled to realize their security interest in the manner specified under Section 52(1)(b) read with Regulation 37 of the IBBI (Liquidation Process) Regulations, 2016.\n* The court held that the applicant is the first charge holder of the immovable fixed assets of the corporate debtor.\n* The court dismissed the objection of Edelweiss Asset Reconstruction Co. Ltd. regarding the priority of charges.\n* The court directed the liquidator to hand over the symbolic possession of the fixed assets of the corporate debtor to the applicant to enable them to proceed with the sale of the assets.\n* The court directed the liquidator to inform the Tribunal about the manner and progress of the sale of assets from time-to-time for further directions/instructions.\n\n**4. Citations:**\n\n* **Insolvency and Bankruptcy Code, 2016**\n* **Regulation 37 of the Insolvency and Bankruptcy Board of India (Liquidation Process) Regulations, 2016**\n* **Suit No. 84 of 2013 filed with the Court of Civil Judge (Senior Division), Nanjangud, Karnataka**",
    "**1. Key Legal Issues and Holdings:**\n\n* **Dowry and Cruelty:** The case revolves around allegations of dowry demands and cruelty by the husband (petitioner) towards his wife.\n* **Section 498-A IPC:** The main legal issue is the application of Section 498-A of the Indian Penal Code, 1860, which deals with cruelty by the husband or his relatives towards a married woman.\n* **Sentencing:** The court considered the appropriateness of the sentence awarded to the petitioner under Section 498-A IPC.\n\n**2. Significant Facts of the Case:**\n\n* The petitioner, Mangat Ram, was convicted under Section 498-A IPC.\n* He was sentenced to one year imprisonment and a fine.\n* He appealed the conviction and sentence, which was dismissed.\n* He then filed a revision petition, seeking a reduction in sentence.\n* The petitioner had already served over two months in prison.\n* The complainant (wife) had obtained an ex-parte divorce decree.\n\n**3. Court's Ruling:**\n\n* The High Court upheld the conviction of the petitioner under Section 498-A IPC.\n* The court reduced the sentence to the period already undergone by the petitioner.\n* The court enhanced the fine to Rs. 5000/-.\n\n**4. Citations:**\n\n* **Yogendra Yadav v. State of Jharkhand**, Criminal Appeal No. 1205 of 2014\n* **Lajpat Rai v. State of Haryana**, Criminal Revision No. 1380 of 1999\n\n**Refined Summary (Updated):**\n\n**1. Key Legal Issues and Holdings:**\n\n* **Default Bail under Section 167(2) Cr.P.C.:** The court considered the applicability of default bail under Section 167(2) Cr.P.C. in cases where the investigating agency fails to file the final report within the prescribed time limit.\n* **Investigation and Filing of Challan:** The court held that the investigation is not considered incomplete merely because the investigating officer awaits reports of experts or fails to append certain documents to the police report.\n* **Role of the Court:** The court emphasized its role in determining whether to permit the prosecutor to adduce evidence of experts and to balance the interest of the accused with the interest of justice.\n\n**2. Significant Facts of the Case:**\n\n* The petitioners, Sukhwinder Kumar @ Sukha, Harpreet Singh @ Bahadur, Navjit Singh, and Rakesh Kumar @ Kesha, were accused of offenses under the Narcotic Drugs and Psychotropic Substances (NDPS) Act, 1985.\n* They filed revision petitions seeking default bail under Section 167(2) Cr.P.C.\n* The prosecution opposed their claims, arguing that the investigating agency had not failed to file the final report within the prescribed time limit.\n* The court considered the rival contentions and held that the petitioners were entitled to default bail.\n\n**3. Court's Ruling:**\n\n* The court disposed of the revision petitions, releasing the petitioners on interim bail till the filing of the report under Section 173 Cr.P.C.\n* The court emphasized the importance of the investigating agency and the prosecuting agency complying with statutory provisions to avoid delay in completing investigations and filing challans.\n* The court noted that the respondent-State had failed to comply with statutory provisions, resulting in the accused getting benefit of default bail.\n\n**4. Citations:**\n\n* **Abdul Azeez P.V. v. National Investigation Agency**, 2015 (1) RCR (Criminal) 239\n* **Mehal Singh v. State of Haryana**, 1978 PLR 480",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512
cosine_accuracy@1 0.0824 0.0778
cosine_accuracy@3 0.2484 0.235
cosine_accuracy@5 0.3394 0.3275
cosine_accuracy@10 0.4761 0.4656
cosine_precision@1 0.0824 0.0778
cosine_precision@3 0.0828 0.0783
cosine_precision@5 0.0679 0.0655
cosine_precision@10 0.0476 0.0466
cosine_recall@1 0.0824 0.0778
cosine_recall@3 0.2484 0.235
cosine_recall@5 0.3394 0.3275
cosine_recall@10 0.4761 0.4656
cosine_ndcg@10 0.2582 0.2502
cosine_mrr@10 0.1909 0.1837
cosine_map@100 0.2018 0.1947

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 132,576 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 26.94 tokens
    • max: 199 tokens
    • min: 298 tokens
    • mean: 543.71 tokens
    • max: 1266 tokens
  • Samples:
    anchor positive
    What are the legal implications of a court setting aside an order related to the initiation of a Corporate Insolvency Resolution Process due to a pre-existing dispute? 1. Key Legal Issues and Holdings:

    * Existence of Dispute: The main legal issue is whether there was an existence of dispute prior to the issuance of the Demand Notice dated 11.04.2019.
    * Section 8 of IBC: The court considered the application of Section 8 of the Insolvency and Bankruptcy Code, 2016, which deals with the requirement of a dispute to be raised by the corporate debtor in response to a demand notice.
    * Admissibility of Corporate Insolvency Resolution Process (CIRP): The court's ruling affected the admissibility of the CIRP against the corporate debtor.

    2. Significant Facts of the Case:

    * The corporate debtor, Triumph Realty Pvt. Ltd., had a pre-existing dispute with the operational creditor, Tech India Engineers Pvt. Ltd.
    * The operational creditor issued a demand notice dated 11.04.2019, which was received by the corporate debtor on 16.04.2019.
    * The corporate debtor raised disputes through e-mails dated 04.10.2018, 01.11.2018, and 04.12.2018, among o...
    How does the court assess whether a dispute is genuine or merely spurious, hypothetical, or illusory? 1. Key Legal Issues and Holdings:

    * Existence of Dispute: The court considered whether a dispute existed between the parties before the issuance of the Demand Notice under Section 9 of the Insolvency and Bankruptcy Code, 2016.
    * Pre-existing Dispute: The court relied on the principle laid down by the Hon'ble Supreme Court in "Mobilox Innovations Private Limited v. KIRUSA Software Pvt. Ltd." that a dispute must be pre-existing before the receipt of the Demand Notice.
    * Section 8 of the Code: The court analyzed the provisions of Section 8 of the Code, which deals with the procedure for an operational creditor to initiate insolvency proceedings against a corporate debtor.
    * Nature of Dispute: The court held that the dispute was genuine and not spurious, hypothetical, or illusory, and that the corporate debtor had raised a plausible contention that required further investigation.

    2. Significant Facts of the Case:

    * The operational creditor, Nirmal K. Dhiran, supp...
    What are the legal implications of dowry demands and cruelty under Indian law, particularly in the context of Section 498-A IPC? 1. Key Legal Issues and Holdings:

    * Dowry and Cruelty: The case revolves around allegations of dowry demands and cruelty by the husband (petitioner) towards his wife.
    * Section 498-A IPC: The main legal issue is the application of Section 498-A of the Indian Penal Code, 1860, which deals with cruelty by the husband or his relatives towards a married woman.
    * Rent Control and Eviction: The case also involves a dispute over rent control and eviction under the Uttar Pradesh Urban Buildings (Regulation of Letting, Rent and Eviction) Act, 1972.

    2. Significant Facts of the Case:

    * The petitioner, Mangat Ram, was convicted under Section 498-A IPC.
    * He was sentenced to one year imprisonment and a fine.
    * He appealed the conviction and sentence, which was dismissed.
    * He then filed a revision petition, seeking a reduction in sentence.
    * The petitioner had already served over two months in prison.
    * The complainant (wife) had obtained an ex-parte divorce decree.

    **3. Cou...
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10
0.0048 10 0.4645 - -
0.0097 20 0.4746 - -
0.0145 30 0.4692 - -
0.0193 40 0.4603 - -
0.0241 50 0.3954 - -
0.0290 60 0.4071 - -
0.0338 70 0.4232 - -
0.0386 80 0.374 - -
0.0434 90 0.3748 - -
0.0483 100 0.3046 - -
0.0531 110 0.3648 - -
0.0579 120 0.2515 - -
0.0628 130 0.3437 - -
0.0676 140 0.298 - -
0.0724 150 0.2658 - -
0.0772 160 0.2989 - -
0.0821 170 0.2322 - -
0.0869 180 0.2816 - -
0.0917 190 0.2436 - -
0.0965 200 0.2335 - -
0.1014 210 0.2156 - -
0.1062 220 0.2305 - -
0.1110 230 0.228 - -
0.1159 240 0.2192 - -
0.1207 250 0.2337 - -
0.1255 260 0.2594 - -
0.1303 270 0.1794 - -
0.1352 280 0.1701 - -
0.1400 290 0.1981 - -
0.1448 300 0.2264 - -
0.1497 310 0.2418 - -
0.1545 320 0.292 - -
0.1593 330 0.2112 - -
0.1641 340 0.1933 - -
0.1690 350 0.1779 - -
0.1738 360 0.2294 - -
0.1786 370 0.2104 - -
0.1834 380 0.2286 - -
0.1883 390 0.2752 - -
0.1931 400 0.1852 - -
0.1979 410 0.2052 - -
0.2028 420 0.1893 - -
0.2076 430 0.2466 - -
0.2124 440 0.2177 - -
0.2172 450 0.2506 - -
0.2221 460 0.1974 - -
0.2269 470 0.197 - -
0.2317 480 0.1777 - -
0.2365 490 0.1848 - -
0.2414 500 0.1661 - -
0.2462 510 0.2093 - -
0.2510 520 0.1178 - -
0.2559 530 0.2085 - -
0.2607 540 0.1609 - -
0.2655 550 0.1736 - -
0.2703 560 0.1503 - -
0.2752 570 0.1808 - -
0.2800 580 0.1614 - -
0.2848 590 0.2057 - -
0.2896 600 0.1916 - -
0.2945 610 0.1569 - -
0.2993 620 0.184 - -
0.3041 630 0.2615 - -
0.3090 640 0.2152 - -
0.3138 650 0.1426 - -
0.3186 660 0.145 - -
0.3234 670 0.1484 - -
0.3283 680 0.1567 - -
0.3331 690 0.1365 - -
0.3379 700 0.1594 - -
0.3427 710 0.1486 - -
0.3476 720 0.1663 - -
0.3524 730 0.2052 - -
0.3572 740 0.1777 - -
0.3621 750 0.1728 - -
0.3669 760 0.1669 - -
0.3717 770 0.1356 - -
0.3765 780 0.1706 - -
0.3814 790 0.1916 - -
0.3862 800 0.1365 - -
0.3910 810 0.1392 - -
0.3958 820 0.1708 - -
0.4007 830 0.1971 - -
0.4055 840 0.1363 - -
0.4103 850 0.1411 - -
0.4152 860 0.1484 - -
0.4200 870 0.1767 - -
0.4248 880 0.1871 - -
0.4296 890 0.1393 - -
0.4345 900 0.2113 - -
0.4393 910 0.1614 - -
0.4441 920 0.1309 - -
0.4490 930 0.1329 - -
0.4538 940 0.2125 - -
0.4586 950 0.1929 - -
0.4634 960 0.1777 - -
0.4683 970 0.1813 - -
0.4731 980 0.1341 - -
0.4779 990 0.1025 - -
0.4827 1000 0.2471 - -
0.4876 1010 0.1696 - -
0.4924 1020 0.1144 - -
0.4972 1030 0.1537 - -
0.5021 1040 0.1389 - -
0.5069 1050 0.2184 - -
0.5117 1060 0.1473 - -
0.5165 1070 0.1494 - -
0.5214 1080 0.1568 - -
0.5262 1090 0.1656 - -
0.5310 1100 0.1555 - -
0.5358 1110 0.1108 - -
0.5407 1120 0.1163 - -
0.5455 1130 0.1549 - -
0.5503 1140 0.1638 - -
0.5552 1150 0.1575 - -
0.5600 1160 0.1294 - -
0.5648 1170 0.1402 - -
0.5696 1180 0.1539 - -
0.5745 1190 0.1249 - -
0.5793 1200 0.1042 - -
0.5841 1210 0.1681 - -
0.5889 1220 0.1744 - -
0.5938 1230 0.1144 - -
0.5986 1240 0.1183 - -
0.6034 1250 0.1397 - -
0.6083 1260 0.1938 - -
0.6131 1270 0.1194 - -
0.6179 1280 0.1374 - -
0.6227 1290 0.1203 - -
0.6276 1300 0.0766 - -
0.6324 1310 0.1337 - -
0.6372 1320 0.1695 - -
0.6420 1330 0.1179 - -
0.6469 1340 0.1316 - -
0.6517 1350 0.1294 - -
0.6565 1360 0.1125 - -
0.6614 1370 0.1629 - -
0.6662 1380 0.1094 - -
0.6710 1390 0.1479 - -
0.6758 1400 0.1479 - -
0.6807 1410 0.1608 - -
0.6855 1420 0.1422 - -
0.6903 1430 0.1735 - -
0.6951 1440 0.1403 - -
0.7000 1450 0.1306 - -
0.7048 1460 0.1497 - -
0.7096 1470 0.1154 - -
0.7145 1480 0.1308 - -
0.7193 1490 0.1514 - -
0.7241 1500 0.139 - -
0.7289 1510 0.1139 - -
0.7338 1520 0.1313 - -
0.7386 1530 0.1844 - -
0.7434 1540 0.1195 - -
0.7483 1550 0.1102 - -
0.7531 1560 0.1482 - -
0.7579 1570 0.1232 - -
0.7627 1580 0.1408 - -
0.7676 1590 0.1575 - -
0.7724 1600 0.1415 - -
0.7772 1610 0.1344 - -
0.7820 1620 0.1009 - -
0.7869 1630 0.1192 - -
0.7917 1640 0.1528 - -
0.7965 1650 0.1006 - -
0.8014 1660 0.0748 - -
0.8062 1670 0.1278 - -
0.8110 1680 0.1493 - -
0.8158 1690 0.1751 - -
0.8207 1700 0.1357 - -
0.8255 1710 0.1187 - -
0.8303 1720 0.1024 - -
0.8351 1730 0.1238 - -
0.8400 1740 0.1182 - -
0.8448 1750 0.0882 - -
0.8496 1760 0.1575 - -
0.8545 1770 0.1378 - -
0.8593 1780 0.1437 - -
0.8641 1790 0.1121 - -
0.8689 1800 0.1132 - -
0.8738 1810 0.136 - -
0.8786 1820 0.1421 - -
0.8834 1830 0.1226 - -
0.8882 1840 0.1345 - -
0.8931 1850 0.132 - -
0.8979 1860 0.1698 - -
0.9027 1870 0.1307 - -
0.9076 1880 0.0975 - -
0.9124 1890 0.1166 - -
0.9172 1900 0.1228 - -
0.9220 1910 0.1339 - -
0.9269 1920 0.1015 - -
0.9317 1930 0.1037 - -
0.9365 1940 0.1246 - -
0.9413 1950 0.1302 - -
0.9462 1960 0.144 - -
0.9510 1970 0.128 - -
0.9558 1980 0.1592 - -
0.9607 1990 0.1218 - -
0.9655 2000 0.136 - -
0.9703 2010 0.1093 - -
0.9751 2020 0.1364 - -
0.9800 2030 0.1534 - -
0.9848 2040 0.1066 - -
0.9896 2050 0.0906 - -
0.9944 2060 0.1656 - -
0.9993 2070 0.1304 - -
0.9998 2071 - 0.2679 0.2559
1.0041 2080 0.0858 - -
1.0089 2090 0.1428 - -
1.0138 2100 0.1223 - -
1.0186 2110 0.1171 - -
1.0234 2120 0.1148 - -
1.0282 2130 0.1135 - -
1.0331 2140 0.1257 - -
1.0379 2150 0.1401 - -
1.0427 2160 0.116 - -
1.0476 2170 0.0878 - -
1.0524 2180 0.1154 - -
1.0572 2190 0.0801 - -
1.0620 2200 0.118 - -
1.0669 2210 0.127 - -
1.0717 2220 0.125 - -
1.0765 2230 0.1178 - -
1.0813 2240 0.0835 - -
1.0862 2250 0.0968 - -
1.0910 2260 0.1122 - -
1.0958 2270 0.1019 - -
1.1007 2280 0.1086 - -
1.1055 2290 0.0991 - -
1.1103 2300 0.1141 - -
1.1151 2310 0.1424 - -
1.1200 2320 0.104 - -
1.1248 2330 0.1239 - -
1.1296 2340 0.0829 - -
1.1344 2350 0.0706 - -
1.1393 2360 0.0813 - -
1.1441 2370 0.0796 - -
1.1489 2380 0.1472 - -
1.1538 2390 0.1315 - -
1.1586 2400 0.1264 - -
1.1634 2410 0.0706 - -
1.1682 2420 0.0857 - -
1.1731 2430 0.1078 - -
1.1779 2440 0.0851 - -
1.1827 2450 0.1095 - -
1.1875 2460 0.1406 - -
1.1924 2470 0.0932 - -
1.1972 2480 0.1107 - -
1.2020 2490 0.0941 - -
1.2069 2500 0.0846 - -
1.2117 2510 0.0785 - -
1.2165 2520 0.0877 - -
1.2213 2530 0.0871 - -
1.2262 2540 0.0905 - -
1.2310 2550 0.0769 - -
1.2358 2560 0.0788 - -
1.2406 2570 0.066 - -
1.2455 2580 0.1077 - -
1.2503 2590 0.0717 - -
1.2551 2600 0.0902 - -
1.2600 2610 0.0779 - -
1.2648 2620 0.0735 - -
1.2696 2630 0.0475 - -
1.2744 2640 0.0549 - -
1.2793 2650 0.0699 - -
1.2841 2660 0.0804 - -
1.2889 2670 0.095 - -
1.2937 2680 0.0787 - -
1.2986 2690 0.0708 - -
1.3034 2700 0.1206 - -
1.3082 2710 0.0582 - -
1.3131 2720 0.0859 - -
1.3179 2730 0.0553 - -
1.3227 2740 0.0433 - -
1.3275 2750 0.0725 - -
1.3324 2760 0.0798 - -
1.3372 2770 0.0683 - -
1.3420 2780 0.0489 - -
1.3469 2790 0.0685 - -
1.3517 2800 0.0951 - -
1.3565 2810 0.073 - -
1.3613 2820 0.0687 - -
1.3662 2830 0.0897 - -
1.3710 2840 0.0509 - -
1.3758 2850 0.0554 - -
1.3806 2860 0.0736 - -
1.3855 2870 0.0547 - -
1.3903 2880 0.046 - -
1.3951 2890 0.0553 - -
1.4000 2900 0.0888 - -
1.4048 2910 0.0487 - -
1.4096 2920 0.0358 - -
1.4144 2930 0.0434 - -
1.4193 2940 0.0402 - -
1.4241 2950 0.0581 - -
1.4289 2960 0.0761 - -
1.4337 2970 0.0766 - -
1.4386 2980 0.0662 - -
1.4434 2990 0.0434 - -
1.4482 3000 0.0437 - -
1.4531 3010 0.0777 - -
1.4579 3020 0.0766 - -
1.4627 3030 0.0455 - -
1.4675 3040 0.0894 - -
1.4724 3050 0.0532 - -
1.4772 3060 0.039 - -
1.4820 3070 0.1039 - -
1.4868 3080 0.0757 - -
1.4917 3090 0.0516 - -
1.4965 3100 0.0661 - -
1.5013 3110 0.0482 - -
1.5062 3120 0.0707 - -
1.5110 3130 0.0529 - -
1.5158 3140 0.0539 - -
1.5206 3150 0.0593 - -
1.5255 3160 0.0825 - -
1.5303 3170 0.0608 - -
1.5351 3180 0.0428 - -
1.5399 3190 0.0426 - -
1.5448 3200 0.0515 - -
1.5496 3210 0.0605 - -
1.5544 3220 0.092 - -
1.5593 3230 0.0382 - -
1.5641 3240 0.0543 - -
1.5689 3250 0.0624 - -
1.5737 3260 0.0483 - -
1.5786 3270 0.0454 - -
1.5834 3280 0.0584 - -
1.5882 3290 0.0745 - -
1.5930 3300 0.04 - -
1.5979 3310 0.0434 - -
1.6027 3320 0.0483 - -
1.6075 3330 0.0928 - -
1.6124 3340 0.0532 - -
1.6172 3350 0.0498 - -
1.6220 3360 0.0469 - -
1.6268 3370 0.0274 - -
1.6317 3380 0.0379 - -
1.6365 3390 0.0478 - -
1.6413 3400 0.0506 - -
1.6462 3410 0.057 - -
1.6510 3420 0.0471 - -
1.6558 3430 0.0541 - -
1.6606 3440 0.0726 - -
1.6655 3450 0.0389 - -
1.6703 3460 0.0679 - -
1.6751 3470 0.0584 - -
1.6799 3480 0.0653 - -
1.6848 3490 0.06 - -
1.6896 3500 0.0592 - -
1.6944 3510 0.059 - -
1.6993 3520 0.0517 - -
1.7041 3530 0.0495 - -
1.7089 3540 0.0455 - -
1.7137 3550 0.0377 - -
1.7186 3560 0.0539 - -
1.7234 3570 0.0401 - -
1.7282 3580 0.0389 - -
1.7330 3590 0.0482 - -
1.7379 3600 0.0671 - -
1.7427 3610 0.057 - -
1.7475 3620 0.0389 - -
1.7524 3630 0.0515 - -
1.7572 3640 0.0356 - -
1.7620 3650 0.0537 - -
1.7668 3660 0.0617 - -
1.7717 3670 0.0465 - -
1.7765 3680 0.0538 - -
1.7813 3690 0.0445 - -
1.7861 3700 0.0417 - -
1.7910 3710 0.0543 - -
1.7958 3720 0.0387 - -
1.8006 3730 0.0319 - -
1.8055 3740 0.0518 - -
1.8103 3750 0.0572 - -
1.8151 3760 0.0815 - -
1.8199 3770 0.0609 - -
1.8248 3780 0.0428 - -
1.8296 3790 0.0271 - -
1.8344 3800 0.0296 - -
1.8392 3810 0.047 - -
1.8441 3820 0.031 - -
1.8489 3830 0.0596 - -
1.8537 3840 0.0615 - -
1.8586 3850 0.0467 - -
1.8634 3860 0.0516 - -
1.8682 3870 0.0555 - -
1.8730 3880 0.0446 - -
1.8779 3890 0.0872 - -
1.8827 3900 0.0408 - -
1.8875 3910 0.0607 - -
1.8923 3920 0.0415 - -
1.8972 3930 0.0586 - -
1.9020 3940 0.0526 - -
1.9068 3950 0.0447 - -
1.9117 3960 0.0565 - -
1.9165 3970 0.0663 - -
1.9213 3980 0.0476 - -
1.9261 3990 0.0393 - -
1.9310 4000 0.0407 - -
1.9358 4010 0.0403 - -
1.9406 4020 0.0413 - -
1.9455 4030 0.0484 - -
1.9503 4040 0.0581 - -
1.9551 4050 0.0633 - -
1.9599 4060 0.0444 - -
1.9648 4070 0.0529 - -
1.9696 4080 0.0423 - -
1.9744 4090 0.0527 - -
1.9792 4100 0.0719 - -
1.9841 4110 0.0479 - -
1.9889 4120 0.0478 - -
1.9937 4130 0.0708 - -
1.9986 4140 0.058 - -
2.0 4143 - 0.2672 0.2575
2.0034 4150 0.0274 - -
2.0082 4160 0.0384 - -
2.0130 4170 0.0639 - -
2.0179 4180 0.0462 - -
2.0227 4190 0.0438 - -
2.0275 4200 0.0395 - -
2.0323 4210 0.0591 - -
2.0372 4220 0.0519 - -
2.0420 4230 0.0543 - -
2.0468 4240 0.0292 - -
2.0517 4250 0.0449 - -
2.0565 4260 0.0552 - -
2.0613 4270 0.0398 - -
2.0661 4280 0.0647 - -
2.0710 4290 0.0401 - -
2.0758 4300 0.0419 - -
2.0806 4310 0.0369 - -
2.0854 4320 0.0271 - -
2.0903 4330 0.074 - -
2.0951 4340 0.0454 - -
2.0999 4350 0.0439 - -
2.1048 4360 0.0509 - -
2.1096 4370 0.0677 - -
2.1144 4380 0.0514 - -
2.1192 4390 0.0437 - -
2.1241 4400 0.069 - -
2.1289 4410 0.0288 - -
2.1337 4420 0.0323 - -
2.1385 4430 0.0233 - -
2.1434 4440 0.0322 - -
2.1482 4450 0.0627 - -
2.1530 4460 0.0557 - -
2.1579 4470 0.0649 - -
2.1627 4480 0.0305 - -
2.1675 4490 0.0267 - -
2.1723 4500 0.0325 - -
2.1772 4510 0.034 - -
2.1820 4520 0.0461 - -
2.1868 4530 0.0679 - -
2.1916 4540 0.033 - -
2.1965 4550 0.0483 - -
2.2013 4560 0.0425 - -
2.2061 4570 0.0336 - -
2.2110 4580 0.034 - -
2.2158 4590 0.0382 - -
2.2206 4600 0.0372 - -
2.2254 4610 0.0396 - -
2.2303 4620 0.0299 - -
2.2351 4630 0.0258 - -
2.2399 4640 0.0322 - -
2.2448 4650 0.0392 - -
2.2496 4660 0.0396 - -
2.2544 4670 0.0406 - -
2.2592 4680 0.0285 - -
2.2641 4690 0.0337 - -
2.2689 4700 0.0238 - -
2.2737 4710 0.02 - -
2.2785 4720 0.0347 - -
2.2834 4730 0.0238 - -
2.2882 4740 0.045 - -
2.2930 4750 0.0297 - -
2.2979 4760 0.0319 - -
2.3027 4770 0.0502 - -
2.3075 4780 0.0362 - -
2.3123 4790 0.0329 - -
2.3172 4800 0.0219 - -
2.3220 4810 0.0176 - -
2.3268 4820 0.0282 - -
2.3316 4830 0.0374 - -
2.3365 4840 0.0429 - -
2.3413 4850 0.0164 - -
2.3461 4860 0.0404 - -
2.3510 4870 0.0287 - -
2.3558 4880 0.0239 - -
2.3606 4890 0.0402 - -
2.3654 4900 0.0341 - -
2.3703 4910 0.0204 - -
2.3751 4920 0.0328 - -
2.3799 4930 0.0388 - -
2.3847 4940 0.0222 - -
2.3896 4950 0.0221 - -
2.3944 4960 0.0318 - -
2.3992 4970 0.0401 - -
2.4041 4980 0.0171 - -
2.4089 4990 0.0195 - -
2.4137 5000 0.019 - -
2.4185 5010 0.0163 - -
2.4234 5020 0.0278 - -
2.4282 5030 0.0399 - -
2.4330 5040 0.0412 - -
2.4378 5050 0.0254 - -
2.4427 5060 0.0175 - -
2.4475 5070 0.0251 - -
2.4523 5080 0.0256 - -
2.4572 5090 0.0294 - -
2.4620 5100 0.0278 - -
2.4668 5110 0.0435 - -
2.4716 5120 0.0189 - -
2.4765 5130 0.0195 - -
2.4813 5140 0.045 - -
2.4861 5150 0.0614 - -
2.4909 5160 0.0234 - -
2.4958 5170 0.0267 - -
2.5006 5180 0.0294 - -
2.5054 5190 0.0232 - -
2.5103 5200 0.026 - -
2.5151 5210 0.0292 - -
2.5199 5220 0.0335 - -
2.5247 5230 0.0311 - -
2.5296 5240 0.0248 - -
2.5344 5250 0.0223 - -
2.5392 5260 0.0188 - -
2.5441 5270 0.0206 - -
2.5489 5280 0.0264 - -
2.5537 5290 0.0479 - -
2.5585 5300 0.0181 - -
2.5634 5310 0.0212 - -
2.5682 5320 0.0207 - -
2.5730 5330 0.0233 - -
2.5778 5340 0.0227 - -
2.5827 5350 0.0239 - -
2.5875 5360 0.0267 - -
2.5923 5370 0.0215 - -
2.5972 5380 0.0164 - -
2.6020 5390 0.021 - -
2.6068 5400 0.0392 - -
2.6116 5410 0.0277 - -
2.6165 5420 0.0219 - -
2.6213 5430 0.0221 - -
2.6261 5440 0.018 - -
2.6309 5450 0.0159 - -
2.6358 5460 0.0213 - -
2.6406 5470 0.0239 - -
2.6454 5480 0.0289 - -
2.6503 5490 0.0229 - -
2.6551 5500 0.0307 - -
2.6599 5510 0.0416 - -
2.6647 5520 0.0191 - -
2.6696 5530 0.0335 - -
2.6744 5540 0.0402 - -
2.6792 5550 0.0294 - -
2.6840 5560 0.0222 - -
2.6889 5570 0.0296 - -
2.6937 5580 0.0347 - -
2.6985 5590 0.0217 - -
2.7034 5600 0.0163 - -
2.7082 5610 0.0209 - -
2.7130 5620 0.0195 - -
2.7178 5630 0.0273 - -
2.7227 5640 0.0169 - -
2.7275 5650 0.0191 - -
2.7323 5660 0.0166 - -
2.7371 5670 0.0265 - -
2.7420 5680 0.0313 - -
2.7468 5690 0.0215 - -
2.7516 5700 0.0228 - -
2.7565 5710 0.0208 - -
2.7613 5720 0.0206 - -
2.7661 5730 0.0208 - -
2.7709 5740 0.0317 - -
2.7758 5750 0.0283 - -
2.7806 5760 0.0206 - -
2.7854 5770 0.0145 - -
2.7902 5780 0.0238 - -
2.7951 5790 0.0228 - -
2.7999 5800 0.0133 - -
2.8047 5810 0.0194 - -
2.8096 5820 0.0398 - -
2.8144 5830 0.025 - -
2.8192 5840 0.0309 - -
2.8240 5850 0.0355 - -
2.8289 5860 0.0123 - -
2.8337 5870 0.0182 - -
2.8385 5880 0.023 - -
2.8434 5890 0.0191 - -
2.8482 5900 0.023 - -
2.8530 5910 0.0356 - -
2.8578 5920 0.0239 - -
2.8627 5930 0.0203 - -
2.8675 5940 0.0154 - -
2.8723 5950 0.025 - -
2.8771 5960 0.0491 - -
2.8820 5970 0.0205 - -
2.8868 5980 0.03 - -
2.8916 5990 0.0249 - -
2.8965 6000 0.0355 - -
2.9013 6010 0.0277 - -
2.9061 6020 0.0231 - -
2.9109 6030 0.0202 - -
2.9158 6040 0.0294 - -
2.9206 6050 0.0181 - -
2.9254 6060 0.0179 - -
2.9302 6070 0.0275 - -
2.9351 6080 0.0211 - -
2.9399 6090 0.0191 - -
2.9447 6100 0.0233 - -
2.9496 6110 0.0302 - -
2.9544 6120 0.0344 - -
2.9592 6130 0.0391 - -
2.9640 6140 0.0242 - -
2.9689 6150 0.0212 - -
2.9737 6160 0.0404 - -
2.9785 6170 0.0428 - -
2.9833 6180 0.0206 - -
2.9882 6190 0.0265 - -
2.9930 6200 0.0378 - -
2.9978 6210 0.0255 - -
2.9998 6214 - 0.2628 0.2557
3.0027 6220 0.024 - -
3.0075 6230 0.0198 - -
3.0123 6240 0.0234 - -
3.0171 6250 0.0424 - -
3.0220 6260 0.0297 - -
3.0268 6270 0.0209 - -
3.0316 6280 0.0344 - -
3.0364 6290 0.0273 - -
3.0413 6300 0.0247 - -
3.0461 6310 0.0206 - -
3.0509 6320 0.0231 - -
3.0558 6330 0.0265 - -
3.0606 6340 0.0198 - -
3.0654 6350 0.0389 - -
3.0702 6360 0.0171 - -
3.0751 6370 0.0235 - -
3.0799 6380 0.0228 - -
3.0847 6390 0.0184 - -
3.0895 6400 0.0459 - -
3.0944 6410 0.0222 - -
3.0992 6420 0.0186 - -
3.1040 6430 0.0246 - -
3.1089 6440 0.0446 - -
3.1137 6450 0.0333 - -
3.1185 6460 0.0205 - -
3.1233 6470 0.0228 - -
3.1282 6480 0.0287 - -
3.1330 6490 0.0205 - -
3.1378 6500 0.0143 - -
3.1427 6510 0.0159 - -
3.1475 6520 0.0367 - -
3.1523 6530 0.0327 - -
3.1571 6540 0.0355 - -
3.1620 6550 0.0202 - -
3.1668 6560 0.0133 - -
3.1716 6570 0.0143 - -
3.1764 6580 0.0171 - -
3.1813 6590 0.0208 - -
3.1861 6600 0.0368 - -
3.1909 6610 0.0238 - -
3.1958 6620 0.0276 - -
3.2006 6630 0.0269 - -
3.2054 6640 0.0152 - -
3.2102 6650 0.0229 - -
3.2151 6660 0.0189 - -
3.2199 6670 0.0206 - -
3.2247 6680 0.0206 - -
3.2295 6690 0.0164 - -
3.2344 6700 0.0121 - -
3.2392 6710 0.0224 - -
3.2440 6720 0.0193 - -
3.2489 6730 0.0213 - -
3.2537 6740 0.0216 - -
3.2585 6750 0.0155 - -
3.2633 6760 0.0185 - -
3.2682 6770 0.018 - -
3.2730 6780 0.0107 - -
3.2778 6790 0.0218 - -
3.2826 6800 0.0161 - -
3.2875 6810 0.0256 - -
3.2923 6820 0.015 - -
3.2971 6830 0.0132 - -
3.3020 6840 0.0228 - -
3.3068 6850 0.0274 - -
3.3116 6860 0.0232 - -
3.3164 6870 0.0122 - -
3.3213 6880 0.0101 - -
3.3261 6890 0.0138 - -
3.3309 6900 0.0223 - -
3.3357 6910 0.018 - -
3.3406 6920 0.0105 - -
3.3454 6930 0.0212 - -
3.3502 6940 0.0189 - -
3.3551 6950 0.0115 - -
3.3599 6960 0.0187 - -
3.3647 6970 0.0237 - -
3.3695 6980 0.0172 - -
3.3744 6990 0.0148 - -
3.3792 7000 0.0234 - -
3.3840 7010 0.0139 - -
3.3888 7020 0.012 - -
3.3937 7030 0.0181 - -
3.3985 7040 0.0247 - -
3.4033 7050 0.0114 - -
3.4082 7060 0.0107 - -
3.4130 7070 0.0133 - -
3.4178 7080 0.0092 - -
3.4226 7090 0.0168 - -
3.4275 7100 0.0225 - -
3.4323 7110 0.0127 - -
3.4371 7120 0.0231 - -
3.4420 7130 0.0104 - -
3.4468 7140 0.0114 - -
3.4516 7150 0.0084 - -
3.4564 7160 0.0261 - -
3.4613 7170 0.0201 - -
3.4661 7180 0.0251 - -
3.4709 7190 0.0135 - -
3.4757 7200 0.0126 - -
3.4806 7210 0.0257 - -
3.4854 7220 0.0369 - -
3.4902 7230 0.0137 - -
3.4951 7240 0.016 - -
3.4999 7250 0.0187 - -
3.5047 7260 0.0156 - -
3.5095 7270 0.0141 - -
3.5144 7280 0.0258 - -
3.5192 7290 0.0283 - -
3.5240 7300 0.02 - -
3.5288 7310 0.0283 - -
3.5337 7320 0.0142 - -
3.5385 7330 0.0107 - -
3.5433 7340 0.0144 - -
3.5482 7350 0.0146 - -
3.5530 7360 0.0321 - -
3.5578 7370 0.0101 - -
3.5626 7380 0.0145 - -
3.5675 7390 0.0132 - -
3.5723 7400 0.0159 - -
3.5771 7410 0.0167 - -
3.5819 7420 0.0116 - -
3.5868 7430 0.0175 - -
3.5916 7440 0.0156 - -
3.5964 7450 0.0096 - -
3.6013 7460 0.0156 - -
3.6061 7470 0.0251 - -
3.6109 7480 0.0163 - -
3.6157 7490 0.0118 - -
3.6206 7500 0.0161 - -
3.6254 7510 0.0131 - -
3.6302 7520 0.0091 - -
3.6350 7530 0.0136 - -
3.6399 7540 0.0175 - -
3.6447 7550 0.0213 - -
3.6495 7560 0.0168 - -
3.6544 7570 0.02 - -
3.6592 7580 0.0204 - -
3.6640 7590 0.0132 - -
3.6688 7600 0.0254 - -
3.6737 7610 0.0313 - -
3.6785 7620 0.0107 - -
3.6833 7630 0.0241 - -
3.6881 7640 0.0188 - -
3.6930 7650 0.0166 - -
3.6978 7660 0.021 - -
3.7026 7670 0.0126 - -
3.7075 7680 0.0148 - -
3.7123 7690 0.0155 - -
3.7171 7700 0.0117 - -
3.7219 7710 0.0124 - -
3.7268 7720 0.0121 - -
3.7316 7730 0.0118 - -
3.7364 7740 0.0182 - -
3.7413 7750 0.0168 - -
3.7461 7760 0.0146 - -
3.7509 7770 0.0199 - -
3.7557 7780 0.0109 - -
3.7606 7790 0.0192 - -
3.7654 7800 0.014 - -
3.7702 7810 0.0261 - -
3.7750 7820 0.0176 - -
3.7799 7830 0.0156 - -
3.7847 7840 0.0112 - -
3.7895 7850 0.0136 - -
3.7944 7860 0.0174 - -
3.7992 7870 0.0082 - -
3.8040 7880 0.0111 - -
3.8088 7890 0.0279 - -
3.8137 7900 0.0206 - -
3.8185 7910 0.0174 - -
3.8233 7920 0.0263 - -
3.8281 7930 0.0091 - -
3.8330 7940 0.0127 - -
3.8378 7950 0.0138 - -
3.8426 7960 0.0168 - -
3.8475 7970 0.0141 - -
3.8523 7980 0.0317 - -
3.8571 7990 0.0167 - -
3.8619 8000 0.0151 - -
3.8668 8010 0.0122 - -
3.8716 8020 0.0167 - -
3.8764 8030 0.0382 - -
3.8812 8040 0.0128 - -
3.8861 8050 0.0232 - -
3.8909 8060 0.0222 - -
3.8957 8070 0.0194 - -
3.9006 8080 0.0191 - -
3.9054 8090 0.0136 - -
3.9102 8100 0.0106 - -
3.9150 8110 0.0216 - -
3.9199 8120 0.0178 - -
3.9247 8130 0.0126 - -
3.9295 8140 0.0158 - -
3.9343 8150 0.0186 - -
3.9392 8160 0.0167 - -
3.9440 8170 0.0159 - -
3.9488 8180 0.0174 - -
3.9537 8190 0.0211 - -
3.9585 8200 0.0245 - -
3.9633 8210 0.0186 - -
3.9681 8220 0.0162 - -
3.9730 8230 0.0312 - -
3.9778 8240 0.033 - -
3.9826 8250 0.0147 - -
3.9874 8260 0.0224 - -
3.9923 8270 0.0215 - -
3.9971 8280 0.0275 - -
3.9990 8284 - 0.2582 0.2502
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.5
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
70
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tejasw1/votum-case-law-v1

Finetuned
(11)
this model

Evaluation results