metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: NLP-at-home
results: []
NLP-at-home
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6113
- F1: 0.7954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.55 | 1.0 | 24 | 1.4596 | 0.3490 |
1.4214 | 2.0 | 48 | 1.3385 | 0.4138 |
1.2835 | 3.0 | 72 | 1.1953 | 0.4668 |
1.1497 | 4.0 | 96 | 1.0505 | 0.5073 |
1.0245 | 5.0 | 120 | 0.9573 | 0.5699 |
0.8971 | 6.0 | 144 | 0.8738 | 0.6081 |
0.7976 | 7.0 | 168 | 0.8189 | 0.6308 |
0.7152 | 8.0 | 192 | 0.7628 | 0.6572 |
0.6554 | 9.0 | 216 | 0.7268 | 0.6595 |
0.593 | 10.0 | 240 | 0.6843 | 0.7038 |
0.5481 | 11.0 | 264 | 0.6570 | 0.6999 |
0.4966 | 12.0 | 288 | 0.6382 | 0.7195 |
0.4585 | 13.0 | 312 | 0.6236 | 0.7169 |
0.425 | 14.0 | 336 | 0.6207 | 0.6902 |
0.3826 | 15.0 | 360 | 0.6062 | 0.7246 |
0.3512 | 16.0 | 384 | 0.6122 | 0.7498 |
0.3225 | 17.0 | 408 | 0.5965 | 0.7596 |
0.3051 | 18.0 | 432 | 0.5882 | 0.7503 |
0.2834 | 19.0 | 456 | 0.5915 | 0.7556 |
0.2538 | 20.0 | 480 | 0.6036 | 0.7599 |
0.2458 | 21.0 | 504 | 0.5993 | 0.7455 |
0.2186 | 22.0 | 528 | 0.5876 | 0.7598 |
0.2081 | 23.0 | 552 | 0.5915 | 0.7495 |
0.1893 | 24.0 | 576 | 0.5855 | 0.7736 |
0.1732 | 25.0 | 600 | 0.6043 | 0.7445 |
0.1675 | 26.0 | 624 | 0.5903 | 0.7598 |
0.1505 | 27.0 | 648 | 0.5872 | 0.7820 |
0.141 | 28.0 | 672 | 0.5923 | 0.7847 |
0.1333 | 29.0 | 696 | 0.5937 | 0.7859 |
0.1225 | 30.0 | 720 | 0.5885 | 0.7888 |
0.1113 | 31.0 | 744 | 0.5829 | 0.7882 |
0.1012 | 32.0 | 768 | 0.5783 | 0.7887 |
0.0997 | 33.0 | 792 | 0.5830 | 0.7887 |
0.0936 | 34.0 | 816 | 0.5773 | 0.7992 |
0.0867 | 35.0 | 840 | 0.5876 | 0.8033 |
0.0844 | 36.0 | 864 | 0.5836 | 0.7887 |
0.0803 | 37.0 | 888 | 0.5947 | 0.7842 |
0.0731 | 38.0 | 912 | 0.5983 | 0.7981 |
0.0718 | 39.0 | 936 | 0.5971 | 0.7851 |
0.0672 | 40.0 | 960 | 0.6077 | 0.7932 |
0.0672 | 41.0 | 984 | 0.6077 | 0.7941 |
0.063 | 42.0 | 1008 | 0.6087 | 0.7954 |
0.0597 | 43.0 | 1032 | 0.6059 | 0.7954 |
0.0593 | 44.0 | 1056 | 0.5986 | 0.8073 |
0.0592 | 45.0 | 1080 | 0.6020 | 0.7954 |
0.0533 | 46.0 | 1104 | 0.6060 | 0.8008 |
0.0537 | 47.0 | 1128 | 0.6091 | 0.7994 |
0.0531 | 48.0 | 1152 | 0.6096 | 0.8113 |
0.0516 | 49.0 | 1176 | 0.6112 | 0.7954 |
0.0532 | 50.0 | 1200 | 0.6113 | 0.7954 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1