SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Positive |
|
Negative |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9043 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Tarssio/modelo_setfit_politica_BA")
# Run inference
preds = model("👏👏👏")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 19.4813 | 313 |
Label | Training Sample Count |
---|---|
Negative | 175 |
Positive | 199 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 1 | 0.3616 | - |
0.0535 | 50 | 0.3129 | - |
0.1070 | 100 | 0.2912 | - |
0.1604 | 150 | 0.191 | - |
0.2139 | 200 | 0.0907 | - |
0.2674 | 250 | 0.0086 | - |
0.3209 | 300 | 0.0042 | - |
0.3743 | 350 | 0.0161 | - |
0.4278 | 400 | 0.0007 | - |
0.4813 | 450 | 0.0403 | - |
0.5348 | 500 | 0.0055 | - |
0.5882 | 550 | 0.0057 | - |
0.6417 | 600 | 0.0002 | - |
0.6952 | 650 | 0.0002 | - |
0.7487 | 700 | 0.0 | - |
0.8021 | 750 | 0.0026 | - |
0.8556 | 800 | 0.0002 | - |
0.9091 | 850 | 0.0002 | - |
0.9626 | 900 | 0.0004 | - |
1.0 | 935 | - | 0.1724 |
1.0160 | 950 | 0.0001 | - |
1.0695 | 1000 | 0.0006 | - |
1.1230 | 1050 | 0.0001 | - |
1.1765 | 1100 | 0.0008 | - |
1.2299 | 1150 | 0.0002 | - |
1.2834 | 1200 | 0.0001 | - |
1.3369 | 1250 | 0.0002 | - |
1.3904 | 1300 | 0.0002 | - |
1.4439 | 1350 | 0.0002 | - |
1.4973 | 1400 | 0.0002 | - |
1.5508 | 1450 | 0.0 | - |
1.6043 | 1500 | 0.0002 | - |
1.6578 | 1550 | 0.2178 | - |
1.7112 | 1600 | 0.0002 | - |
1.7647 | 1650 | 0.0001 | - |
1.8182 | 1700 | 0.0001 | - |
1.8717 | 1750 | 0.0003 | - |
1.9251 | 1800 | 0.0359 | - |
1.9786 | 1850 | 0.0001 | - |
2.0 | 1870 | - | 0.1601 |
2.0321 | 1900 | 0.0001 | - |
2.0856 | 1950 | 0.0002 | - |
2.1390 | 2000 | 0.0001 | - |
2.1925 | 2050 | 0.0001 | - |
2.2460 | 2100 | 0.0002 | - |
2.2995 | 2150 | 0.0002 | - |
2.3529 | 2200 | 0.0003 | - |
2.4064 | 2250 | 0.0001 | - |
2.4599 | 2300 | 0.0002 | - |
2.5134 | 2350 | 0.0001 | - |
2.5668 | 2400 | 0.0 | - |
2.6203 | 2450 | 0.0001 | - |
2.6738 | 2500 | 0.0 | - |
2.7273 | 2550 | 0.0001 | - |
2.7807 | 2600 | 0.0001 | - |
2.8342 | 2650 | 0.0 | - |
2.8877 | 2700 | 0.0 | - |
2.9412 | 2750 | 0.0 | - |
2.9947 | 2800 | 0.0001 | - |
3.0 | 2805 | - | 0.1568 |
3.0481 | 2850 | 0.0001 | - |
3.1016 | 2900 | 0.0001 | - |
3.1551 | 2950 | 0.0001 | - |
3.2086 | 3000 | 0.0001 | - |
3.2620 | 3050 | 0.0001 | - |
3.3155 | 3100 | 0.0045 | - |
3.3690 | 3150 | 0.0 | - |
3.4225 | 3200 | 0.0001 | - |
3.4759 | 3250 | 0.0002 | - |
3.5294 | 3300 | 0.0 | - |
3.5829 | 3350 | 0.0002 | - |
3.6364 | 3400 | 0.0 | - |
3.6898 | 3450 | 0.0 | - |
3.7433 | 3500 | 0.0002 | - |
3.7968 | 3550 | 0.0 | - |
3.8503 | 3600 | 0.0 | - |
3.9037 | 3650 | 0.0005 | - |
3.9572 | 3700 | 0.0001 | - |
4.0 | 3740 | - | 0.1574 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.