2024.09.24-01.27
This model is a fine-tuned version of /src/tanner/chess-roberta-code/model_configs/chess_roberta.json on the TannerGladson/chess-roberta-pretraining dataset. It achieves the following results on the evaluation set:
- Loss: 2.1202
- Accuracy: 0.5446
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 9000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1201 | 0.0120 | 1000 | 2.1195 | 0.5445 |
2.1222 | 0.0239 | 2000 | 2.1199 | 0.5446 |
2.1179 | 0.0359 | 3000 | 2.1199 | 0.5444 |
2.1215 | 0.0479 | 4000 | 2.1186 | 0.5446 |
2.1176 | 0.0598 | 5000 | 2.1194 | 0.5445 |
2.1189 | 0.0718 | 6000 | 2.1193 | 0.5445 |
2.1184 | 0.0838 | 7000 | 2.1194 | 0.5446 |
2.119 | 0.0957 | 8000 | 2.1190 | 0.5446 |
2.1237 | 0.1077 | 9000 | 2.1201 | 0.5446 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for TannerGladson/chess-roberta-whole-move-pretrained
Unable to build the model tree, the base model loops to the model itself. Learn more.
Dataset used to train TannerGladson/chess-roberta-whole-move-pretrained
Evaluation results
- Accuracy on TannerGladson/chess-roberta-pretrainingself-reported0.545