bert-finetuned
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6753
- Accuracy: 0.6966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9191 | 0.3333 | 30 | 0.8623 | 0.6180 |
0.9387 | 0.6667 | 60 | 0.8493 | 0.6180 |
0.8703 | 1.0 | 90 | 0.8300 | 0.6180 |
0.8821 | 1.3333 | 120 | 0.8125 | 0.6404 |
0.8534 | 1.6667 | 150 | 0.8569 | 0.6180 |
0.814 | 2.0 | 180 | 0.8207 | 0.6180 |
0.8321 | 2.3333 | 210 | 0.7345 | 0.6966 |
0.7997 | 2.6667 | 240 | 0.8491 | 0.4607 |
0.8799 | 3.0 | 270 | 0.6921 | 0.7303 |
0.8526 | 3.3333 | 300 | 0.6953 | 0.6854 |
0.7293 | 3.6667 | 330 | 0.7100 | 0.6517 |
0.783 | 4.0 | 360 | 0.6989 | 0.6854 |
0.7399 | 4.3333 | 390 | 0.7053 | 0.6966 |
0.6808 | 4.6667 | 420 | 0.7315 | 0.6517 |
0.6753 | 5.0 | 450 | 0.6753 | 0.6966 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for TakalaWang/bert-finetuned
Base model
google-bert/bert-base-uncased