bert-finetuned

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6753
  • Accuracy: 0.6966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9191 0.3333 30 0.8623 0.6180
0.9387 0.6667 60 0.8493 0.6180
0.8703 1.0 90 0.8300 0.6180
0.8821 1.3333 120 0.8125 0.6404
0.8534 1.6667 150 0.8569 0.6180
0.814 2.0 180 0.8207 0.6180
0.8321 2.3333 210 0.7345 0.6966
0.7997 2.6667 240 0.8491 0.4607
0.8799 3.0 270 0.6921 0.7303
0.8526 3.3333 300 0.6953 0.6854
0.7293 3.6667 330 0.7100 0.6517
0.783 4.0 360 0.6989 0.6854
0.7399 4.3333 390 0.7053 0.6966
0.6808 4.6667 420 0.7315 0.6517
0.6753 5.0 450 0.6753 0.6966

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for TakalaWang/bert-finetuned

Finetuned
(3298)
this model