Add 4-bit quantization and automatic device mapping for improved performance.

#1
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -63,3 +63,44 @@ generated_ids = model.generate(model_inputs,
63
  decoded = tokenizer.batch_decode(generated_ids)
64
  print(decoded[0])
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  decoded = tokenizer.batch_decode(generated_ids)
64
  print(decoded[0])
65
 
66
+ ```
67
+
68
+ # 4-bit Quantized Inference
69
+
70
+ ```python
71
+
72
+ # pip install bitsandbytes accelerate
73
+
74
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
75
+ import torch
76
+
77
+ quantization_config = BitsAndBytesConfig(
78
+ load_in_4bit=True,
79
+ bnb_4bit_quant_type="nf4",
80
+ bnb_4bit_use_double_quant=True,
81
+ bnb_4bit_compute_dtype=torch.float16 # or torch.bfloat16
82
+ )
83
+
84
+ model = AutoModelForCausalLM.from_pretrained("TURKCELL/Turkcell-LLM-7b-v1", device_map="auto", quantization_config=quantization_config)
85
+ tokenizer = AutoTokenizer.from_pretrained("TURKCELL/Turkcell-LLM-7b-v1")
86
+
87
+ messages = [
88
+ {"role": "user", "content": "Türkiye'nin başkenti neresidir?"},
89
+ ]
90
+
91
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
92
+
93
+ eos_token = tokenizer("<|im_end|>",add_special_tokens=False)["input_ids"][0]
94
+
95
+ device = "cuda"
96
+ model_inputs = encodeds.to(device)
97
+
98
+ generated_ids = model.generate(model_inputs,
99
+ max_new_tokens=1024,
100
+ do_sample=True,
101
+ eos_token_id=eos_token)
102
+
103
+ decoded = tokenizer.batch_decode(generated_ids)
104
+ print(decoded[0])
105
+
106
+ ```