chatglm-6b / README.md
Sengxian's picture
Add chatglm-6b
d11c6aa
|
raw
history blame
2.85 kB
metadata
language:
  - zh
  - en
tags:
  - glm
  - chatglm
  - thudm

ChatGLM-6B

介绍

ChatGLM-6B 是一个开源的、支持中英双语问答和对话的预训练语言模型,基于 GLM 架构,具有 62 亿参数。ChatGLM-6B 使用了和 ChatGLM(内测中,地址 https://chatglm.cn)相同的技术面向中文问答和对话进行优化。

使用方式

使用前请先安装transformers>=4.23.1icetk

pip install "transformers>=4.23.1,icetk"

代码调用

可以通过如下代码调用 ChatGLM-6B 模型来生成对话。

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()

history = []
query = "你好"
response, history = model.chat(tokenizer, query, history=history)
print(response)

query = "晚上睡不着应该怎么办"
response, history = model.chat(tokenizer, query, history=history)
print(history)

关于更多的使用说明,以及如何运行命令行和Web版本的demo,请参考我们的Github repo

INT8 量化

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试使用 transformers 提供的 8bit 量化功能,即将代码中的

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()

替换为

model = AutoModel.from_pretrained("THUDM/chatglm-6b", device_map="auto", load_in_8bit=True, trust_remote_code=True)

使用 8-bit 量化之后大约需要 9.5GB 的 GPU 显存。

引用

如果你觉得我们的工作有帮助的话,请考虑引用下列论文

@inproceedings{
  zeng2023glm-130b,
  title={{GLM}-130B: An Open Bilingual Pre-trained Model},
  author={Aohan Zeng and Xiao Liu and Zhengxiao Du and Zihan Wang and Hanyu Lai and Ming Ding and Zhuoyi Yang and Yifan Xu and Wendi Zheng and Xiao Xia and Weng Lam Tam and Zixuan Ma and Yufei Xue and Jidong Zhai and Wenguang Chen and Zhiyuan Liu and Peng Zhang and Yuxiao Dong and Jie Tang},
  booktitle={The Eleventh International Conference on Learning Representations (ICLR)},
  year={2023},
  url={https://openreview.net/forum?id=-Aw0rrrPUF}
}
@inproceedings{du2022glm,
  title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
  author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages={320--335},
  year={2022}
}