|
--- |
|
license: other |
|
license_link: https://huggingface.co./THUDM/CogVideoX-5b-I2V/blob/main/LICENSE |
|
language: |
|
- en |
|
tags: |
|
- video-generation |
|
- thudm |
|
- image-to-video |
|
inference: false |
|
--- |
|
|
|
# CogVideoX1.5-5B-I2V |
|
|
|
<p style="text-align: center;"> |
|
<div align="center"> |
|
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/> |
|
</div> |
|
<p align="center"> |
|
<a href="https://huggingface.co./THUDM/CogVideoX1.5-5B-I2V/blob/main/README_zh.md">📄 中文阅读</a> | |
|
<a href="https://huggingface.co./spaces/THUDM/CogVideoX-5B-Space">🤗 Huggingface Space</a> | |
|
<a href="https://github.com/THUDM/CogVideo">🌐 Github </a> | |
|
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a> |
|
</p> |
|
<p align="center"> |
|
📍 Visit <a href="https://chatglm.cn/video?fr=osm_cogvideox"> Qingying </a> and the <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API Platform </a> to experience the commercial video generation model |
|
</p> |
|
|
|
## Model Introduction |
|
|
|
CogVideoX is an open-source video generation model similar to [QingYing](https://chatglm.cn/video?fr=osm_cogvideo). |
|
Below is a table listing information on the video generation models available in this generation: |
|
|
|
|
|
<table style="border-collapse: collapse; width: 100%;"> |
|
<tr> |
|
<th style="text-align: center;">Model Name</th> |
|
<th style="text-align: center;">CogVideoX1.5-5B</th> |
|
<th style="text-align: center;">CogVideoX1.5-5B-I2V (Current Repository)</th> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Video Resolution</td> |
|
<td colspan="1" style="text-align: center;">1360 * 768</td> |
|
<td colspan="1" style="text-align: center;"> Min(W, H) = 768 <br> 768 ≤ Max(W, H) ≤ 1360 <br> Max(W, H) % 16 = 0 </td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Inference Precision</td> |
|
<td colspan="2" style="text-align: center;"><b>BF16 (recommended)</b>, FP16, FP32, FP8*, INT8, not supported INT4</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Single GPU Inference Memory Consumption</td> |
|
<td colspan="2" style="text-align: center;"><b>BF16: 9GB minimum*</b></td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Multi-GPU Inference Memory Consumption</td> |
|
<td colspan="2" style="text-align: center;"><b>BF16: 24GB* using diffusers</b><br></td> |
|
|
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td> |
|
<td colspan="2" style="text-align: center;">Single A100: ~1000 seconds (5-second video)<br>Single H100: ~550 seconds (5-second video)</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Prompt Language</td> |
|
<td colspan="5" style="text-align: center;">English*</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Max Prompt Length</td> |
|
<td colspan="2" style="text-align: center;">224 Tokens</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Video Length</td> |
|
<td colspan="2" style="text-align: center;">5 or 10 seconds</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">Frame Rate</td> |
|
<td colspan="2" style="text-align: center;">16 frames/second</td> |
|
</tr> |
|
</table> |
|
|
|
**Data Explanation** |
|
|
|
+ Testing with the `diffusers` library enabled all optimizations included in the library. This scheme has not been |
|
tested on non-NVIDIA A100/H100 devices. It should generally work with all NVIDIA Ampere architecture or higher |
|
devices. Disabling optimizations can triple VRAM usage but increase speed by 3-4 times. You can selectively disable |
|
certain optimizations, including: |
|
|
|
``` |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.vae.enable_slicing() |
|
pipe.vae.enable_tiling() |
|
``` |
|
|
|
+ In multi-GPU inference, `enable_sequential_cpu_offload()` optimization needs to be disabled. |
|
+ Using an INT8 model reduces inference speed, meeting the requirements of lower VRAM GPUs while retaining minimal video |
|
quality degradation, at the cost of significant speed reduction. |
|
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be |
|
used to quantize the text encoder, Transformer, and VAE modules, reducing CogVideoX’s memory requirements, making it |
|
feasible to run the model on smaller VRAM GPUs. TorchAO quantization is fully compatible with `torch.compile`, |
|
significantly improving inference speed. `FP8` precision is required for NVIDIA H100 and above, which requires source |
|
installation of `torch`, `torchao`, `diffusers`, and `accelerate`. Using `CUDA 12.4` is recommended. |
|
+ Inference speed testing also used the above VRAM optimizations, and without optimizations, speed increases by about |
|
10%. Only `diffusers` versions of models support quantization. |
|
+ Models support English input only; other languages should be translated into English during prompt crafting with a |
|
larger model. |
|
|
|
**Note** |
|
|
|
+ Use [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning SAT version models. Check our |
|
GitHub for more details. |
|
|
|
## Getting Started Quickly 🤗 |
|
|
|
This model supports deployment using the Hugging Face diffusers library. You can follow the steps below to get started. |
|
|
|
**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) to check out prompt optimization and |
|
conversion to get a better experience.** |
|
|
|
1. Install the required dependencies |
|
|
|
|
|
|
|
```shell |
|
# diffusers (from source) |
|
# transformers>=4.46.2 |
|
# accelerate>=1.1.1 |
|
# imageio-ffmpeg>=0.5.1 |
|
pip install git+https://github.com/huggingface/diffusers |
|
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg |
|
``` |
|
|
|
2. Run the code |
|
|
|
```python |
|
import torch |
|
from diffusers import CogVideoXImageToVideoPipeline |
|
from diffusers.utils import export_to_video, load_image |
|
|
|
prompt = "A little girl is riding a bicycle at high speed. Focused, detailed, realistic." |
|
image = load_image(image="input.jpg") |
|
pipe = CogVideoXImageToVideoPipeline.from_pretrained( |
|
"THUDM/CogVideoX1.5-5B-I2V", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
pipe.vae.enable_tiling() |
|
pipe.vae.enable_slicing() |
|
|
|
video = pipe( |
|
prompt=prompt, |
|
image=image, |
|
num_videos_per_prompt=1, |
|
num_inference_steps=50, |
|
num_frames=81, |
|
guidance_scale=6, |
|
generator=torch.Generator(device="cuda").manual_seed(42), |
|
).frames[0] |
|
|
|
export_to_video(video, "output.mp4", fps=8) |
|
``` |
|
|
|
## Quantized Inference |
|
|
|
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be |
|
used to quantize the text encoder, transformer, and VAE modules to reduce CogVideoX's memory requirements. This allows |
|
the model to run on free T4 Colab or GPUs with lower VRAM! Also, note that TorchAO quantization is fully compatible |
|
with `torch.compile`, which can significantly accelerate inference. |
|
|
|
```python |
|
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly. |
|
# Source and nightly installation is only required until the next release. |
|
|
|
import torch |
|
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXImageToVideoPipeline |
|
from diffusers.utils import export_to_video, load_image |
|
from transformers import T5EncoderModel |
|
from torchao.quantization import quantize_, int8_weight_only |
|
|
|
quantization = int8_weight_only |
|
|
|
text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX1.5-5B-I2V", subfolder="text_encoder", |
|
torch_dtype=torch.bfloat16) |
|
quantize_(text_encoder, quantization()) |
|
|
|
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX1.5-5B-I2V", subfolder="transformer", |
|
torch_dtype=torch.bfloat16) |
|
quantize_(transformer, quantization()) |
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX1.5-5B-I2V", subfolder="vae", torch_dtype=torch.bfloat16) |
|
quantize_(vae, quantization()) |
|
|
|
# Create pipeline and run inference |
|
pipe = CogVideoXImageToVideoPipeline.from_pretrained( |
|
"THUDM/CogVideoX1.5-5B-I2V", |
|
text_encoder=text_encoder, |
|
transformer=transformer, |
|
vae=vae, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.vae.enable_tiling() |
|
pipe.vae.enable_slicing() |
|
|
|
prompt = "A little girl is riding a bicycle at high speed. Focused, detailed, realistic." |
|
image = load_image(image="input.jpg") |
|
video = pipe( |
|
prompt=prompt, |
|
image=image, |
|
num_videos_per_prompt=1, |
|
num_inference_steps=50, |
|
num_frames=81, |
|
guidance_scale=6, |
|
generator=torch.Generator(device="cuda").manual_seed(42), |
|
).frames[0] |
|
|
|
export_to_video(video, "output.mp4", fps=8) |
|
``` |
|
|
|
Additionally, these models can be serialized and stored using PytorchAO in quantized data types to save disk space. You |
|
can find examples and benchmarks at the following links: |
|
|
|
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897) |
|
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa) |
|
|
|
## Further Exploration |
|
|
|
Feel free to enter our [GitHub](https://github.com/THUDM/CogVideo), where you'll find: |
|
|
|
1. More detailed technical explanations and code. |
|
2. Optimized prompt examples and conversions. |
|
3. Detailed code for model inference and fine-tuning. |
|
4. Project update logs and more interactive opportunities. |
|
5. CogVideoX toolchain to help you better use the model. |
|
6. INT8 model inference code. |
|
|
|
## Model License |
|
|
|
This model is released under the [CogVideoX LICENSE](LICENSE). |
|
|
|
## Citation |
|
|
|
``` |
|
@article{yang2024cogvideox, |
|
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer}, |
|
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others}, |
|
journal={arXiv preprint arXiv:2408.06072}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|