Text Generation
PyTorch
English
llama

Model Card for Llama3-Crab-SFT

Large language models (LLMs) struggle to follow instructions with complex constraints in format, length, etc. Following the conventional instruction-tuning practice, previous works conduct post-training on complex instruction-response pairs generated by feeding complex instructions to advanced LLMs. However, even advanced LLMs cannot follow complex instructions well, thus limiting the quality of generated data. In this work, we find that existing datasets inherently contain implicit complex constraints and propose a novel data generation technique, constraint back-translation. Specifically, we take the high-quality instruction-response pairs in existing datasets and only adopt advanced LLMs to add complex constraints already met by the responses to the instructions, which naturally reduces costs and data noise. In the experiments, we adopt Llama3-70B-Instruct to back-translate constraints and create a high-quality complex instruction-response dataset, named CRAB. We present that post-training on CRAB improves multiple backbone LLMs' complex instruction-following ability, evaluated on extensive instruction-following benchmarks. We further find that constraint back-translation also serves as a useful auxiliary training objective in post-training.

Model Performance

Models BaseModel IFEval FollowBench(HSR) AVG
AVG L1-L2 L3-L5 AVG
GPT-3.5-turbo GPT 66.3 74.2 61 66.2 66.3
GPT-4 GPT 81.3 80.4 69.4 73.8 77.6
Vicuna-13b-V1.5 Llama2 50.3 66.3 39.8 50.4 50.4
WizardLM-13B-V1.2 Llama2 51.4 56.5 36.9 44.7 48
Conifer-13B Llama2 50.2 57.1 40.3 47 48.6
Zephyr-7B-beta Mistral 45.4 54.8 38.2 44.8 45.1
Conifer-7B Mistral 53.9 51.9 40.2 44.9 49.4
Conifer-7B-DPO Mistral 55.7 57 45.4 50 52.9
Llama3 8B Llama3 31.4 6.8 8.2 7.6 19.5
Llama3-crab Llama3 46.9 51.2 26.7 36.5 41.7
Llama3-crab + DPO Llama3 49.7 56.8 38.1 45.5 47.6
Mistral 7B Mistral 25.2 15.5 6.5 10.1 17.7
Mistral-crab Mistral 54.5 59.2 32.8 43.3 48.9
Mistral-crab + DPO Mistral 59.4 59.9 42.5 49.4 54.4

Model Description

  • Developed by: Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
  • Model type: Text Generation
  • Language(s) (NLP): English
  • Finetuned from model [optional]: Llama3-8B
Downloads last month
17
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for THU-KEG/Llama3-Crab-SFT

Quantizations
7 models

Collection including THU-KEG/Llama3-Crab-SFT