Upload tokenizer
Browse files- bpe.model +3 -0
- flaubert2_tokenizer.py +457 -0
- special_tokens_map.json +9 -0
- tokenizer_config.json +17 -0
- vocab.txt +0 -0
bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27573c473b962c1d7d7ef15dd6b5e0dcba5a4201a709ad0798bfb918b68e5bfc
|
3 |
+
size 771488
|
flaubert2_tokenizer.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Largely inspired from https://github.com/king-menin/yttm_transformers_tokenizer/blob/master/tokenization_yttm.py
|
2 |
+
|
3 |
+
from collections import OrderedDict
|
4 |
+
from fairseq.data import Dictionary
|
5 |
+
|
6 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
7 |
+
from transformers.dynamic_module_utils import custom_object_save
|
8 |
+
from transformers.utils import (
|
9 |
+
is_tokenizers_available,
|
10 |
+
logging,
|
11 |
+
)
|
12 |
+
|
13 |
+
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
14 |
+
|
15 |
+
import copy
|
16 |
+
import os
|
17 |
+
import stanza
|
18 |
+
import youtokentome as yttm
|
19 |
+
import json
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
# Slow tokenizers used to be saved in three separated files
|
25 |
+
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
|
26 |
+
ADDED_TOKENS_FILE = "added_tokens.json"
|
27 |
+
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
|
28 |
+
|
29 |
+
if is_tokenizers_available():
|
30 |
+
from tokenizers import AddedToken
|
31 |
+
from tokenizers import Encoding as EncodingFast
|
32 |
+
else:
|
33 |
+
|
34 |
+
@dataclass(frozen=True, eq=True)
|
35 |
+
class AddedToken:
|
36 |
+
"""
|
37 |
+
AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the
|
38 |
+
way it should behave.
|
39 |
+
"""
|
40 |
+
|
41 |
+
content: str = field(default_factory=str)
|
42 |
+
single_word: bool = False
|
43 |
+
lstrip: bool = False
|
44 |
+
rstrip: bool = False
|
45 |
+
normalized: bool = True
|
46 |
+
|
47 |
+
def __getstate__(self):
|
48 |
+
return self.__dict__
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class EncodingFast:
|
52 |
+
"""This is dummy class because without the `tokenizers` library we don't have these objects anyway"""
|
53 |
+
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
class BertDictionary(Dictionary):
|
58 |
+
"""Dictionary for BERT tasks
|
59 |
+
extended from Dictionary by adding support for cls as well as mask symbols"""
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
pad='[PAD]',
|
63 |
+
unk='[UNK]',
|
64 |
+
cls='[CLS]',
|
65 |
+
mask='[MASK]',
|
66 |
+
sep='[SEP]'
|
67 |
+
):
|
68 |
+
super().__init__(pad=pad, unk=unk)
|
69 |
+
(
|
70 |
+
self.cls_word,
|
71 |
+
self.mask_word,
|
72 |
+
self.sep_word,
|
73 |
+
) = cls, mask, sep
|
74 |
+
|
75 |
+
self.is_end = None
|
76 |
+
self.nspecial = len(self.symbols)
|
77 |
+
|
78 |
+
def mask(self):
|
79 |
+
"""Helper to get index of mask symbol"""
|
80 |
+
idx = self.index(self.mask_word)
|
81 |
+
return idx
|
82 |
+
|
83 |
+
def is_end_word(self, idx):
|
84 |
+
if self.is_end is None:
|
85 |
+
self.is_end = [self.symbols[i].endswith("</w>") for i in range(len(self))]
|
86 |
+
return self.is_end[idx]
|
87 |
+
|
88 |
+
|
89 |
+
class FB2Tokenizer(PreTrainedTokenizer):
|
90 |
+
"""
|
91 |
+
YTTMTransformersTokenizer BPE tokenizer. Peculiarities:
|
92 |
+
|
93 |
+
- Byte-level Byte-Pair-Encoding
|
94 |
+
- Requires a space to start the input string => the encoding methods should be called with the
|
95 |
+
``add_prefix_space`` flag set to ``True``.
|
96 |
+
Otherwise, this tokenizer ``encode`` and ``decode`` method will not conserve
|
97 |
+
the absence of a space at the beginning of a string:
|
98 |
+
|
99 |
+
::
|
100 |
+
|
101 |
+
tokenizer.decode(tokenizer.encode("Hello", add_special_tokens=False))
|
102 |
+
|
103 |
+
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users
|
104 |
+
should refer to the superclass for more information regarding methods.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
vocab_file (:obj:`str`):
|
108 |
+
Path to the vocabulary file.
|
109 |
+
unk_token (:obj:`string`, `optional`, defaults to <UNK>`):
|
110 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
111 |
+
token instead.
|
112 |
+
bos_token (:obj:`string`, `optional`, defaults to `<BOS>`):
|
113 |
+
The beginning of sequence token.
|
114 |
+
eos_token (:obj:`string`, `optional`, defaults to `<EOS>`):
|
115 |
+
The end of sequence token.
|
116 |
+
pad_token (:obj:`string`, `optional`, defaults to `<PAD>`):
|
117 |
+
The padding of sequence token.
|
118 |
+
model_max_length: (`Optional`) int: the maximum length in number of tokens for the inputs to the transformer
|
119 |
+
model. When the tokenizer is loaded with `from_pretrained`,
|
120 |
+
this will be set to the value stored for the associated.
|
121 |
+
"""
|
122 |
+
vocab_files_names = {"vocab_file": "vocab.txt", "bpe_model": "bpe.model"}
|
123 |
+
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
vocab_file,
|
127 |
+
bpe_model,
|
128 |
+
unk_token="[UNK]",
|
129 |
+
bos_token="<s>",
|
130 |
+
cls_token="<s>",
|
131 |
+
eos_token="</s>",
|
132 |
+
pad_token="[PAD]",
|
133 |
+
mask_token="[MASK]",
|
134 |
+
sep_token="</s>",
|
135 |
+
model_max_length=512,
|
136 |
+
**kwargs
|
137 |
+
):
|
138 |
+
super().__init__(
|
139 |
+
bos_token=bos_token,
|
140 |
+
eos_token=eos_token,
|
141 |
+
unk_token=unk_token,
|
142 |
+
pad_token=pad_token,
|
143 |
+
cls_token=cls_token,
|
144 |
+
sep_token=sep_token,
|
145 |
+
mask_token=mask_token,
|
146 |
+
model_max_length=model_max_length,
|
147 |
+
**kwargs
|
148 |
+
)
|
149 |
+
# no default special tokens - you can update this value if you add special tokens
|
150 |
+
#self.max_len_single_sentence = model_max_length - 2
|
151 |
+
# no default special tokens - you can update this value if you add special tokens
|
152 |
+
#self.max_len_sentences_pair = model_max_length - 2
|
153 |
+
vocab_file = str(vocab_file)
|
154 |
+
self.vocab_file = str(vocab_file)
|
155 |
+
self.bpe_model_path = str(bpe_model)
|
156 |
+
|
157 |
+
self.vocab_files_names = {'vocab_file': 'vocab.txt', 'bpe_model': 'bpe.model'}
|
158 |
+
|
159 |
+
try:
|
160 |
+
import stanza
|
161 |
+
import youtokentome as yttm
|
162 |
+
import fairseq
|
163 |
+
except ImportError:
|
164 |
+
raise ImportError("You need to install stanza, youtokentome and fairseq to use this tokenizer")
|
165 |
+
|
166 |
+
if os.path.isfile(bpe_model):
|
167 |
+
self.bpe = yttm.BPE(bpe_model, n_threads=-1)
|
168 |
+
else:
|
169 |
+
raise OSError("bpe_model should be a path to model file")
|
170 |
+
|
171 |
+
self.nlp = stanza.Pipeline(lang='fr',
|
172 |
+
processors='tokenize',
|
173 |
+
tokenize_no_ssplit=True,
|
174 |
+
use_gpu=True, tokenize_batch_size=128, verbose=False)
|
175 |
+
|
176 |
+
self.vocab_file = vocab_file
|
177 |
+
self.cache = {}
|
178 |
+
self.dictionary = BertDictionary.load(vocab_file)
|
179 |
+
self.dictionary.add_symbol(mask_token)
|
180 |
+
|
181 |
+
self.vocab = OrderedDict([(key, val) for val, key in enumerate(self.dictionary.symbols)])
|
182 |
+
|
183 |
+
self.encoder = self.vocab
|
184 |
+
self.decoder = {k: v for k, v in enumerate(self.dictionary.symbols)}
|
185 |
+
|
186 |
+
@property
|
187 |
+
def vocab_size(self) -> int:
|
188 |
+
return len(self.vocab)
|
189 |
+
|
190 |
+
def get_vocab(self):
|
191 |
+
return dict(self.vocab)
|
192 |
+
|
193 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
194 |
+
"""
|
195 |
+
Save only the vocabulary of the tokenizer (vocabulary + added tokens).
|
196 |
+
|
197 |
+
This method won't save the configuration and special token mappings of the tokenizer. Use
|
198 |
+
[`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
save_directory (`str`):
|
202 |
+
The directory in which to save the vocabulary.
|
203 |
+
filename_prefix (`str`, *optional*):
|
204 |
+
An optional prefix to add to the named of the saved files.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
`Tuple(str)`: Paths to the files saved.
|
208 |
+
"""
|
209 |
+
if not os.path.isdir(save_directory):
|
210 |
+
exit(f"Provided path ({save_directory}) should be a directory")
|
211 |
+
|
212 |
+
bpe_save_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "bpe.model")
|
213 |
+
os.system(f"cp {self.bpe_model_path} {bpe_save_file}")
|
214 |
+
self.bpe_model_path = bpe_save_file
|
215 |
+
|
216 |
+
vocab_save_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
|
217 |
+
os.system(f"cp {self.vocab_file} {vocab_save_file}")
|
218 |
+
self.vocab_file = vocab_save_file
|
219 |
+
|
220 |
+
return bpe_save_file, vocab_save_file
|
221 |
+
|
222 |
+
def replace_brackets(self, sentence):
|
223 |
+
|
224 |
+
sent = [None] * 10000
|
225 |
+
for j, tok in enumerate(sentence.tokens):
|
226 |
+
if j > len(sent) - 1:
|
227 |
+
break
|
228 |
+
tok = tok.text
|
229 |
+
if tok == "(":
|
230 |
+
tok = "-LRB-"
|
231 |
+
elif tok == ")":
|
232 |
+
tok = "-RRB-"
|
233 |
+
|
234 |
+
sent[j] = tok
|
235 |
+
|
236 |
+
return sent[:len(sentence.tokens)]
|
237 |
+
|
238 |
+
def _tokenize(self, text: str, **kwargs):
|
239 |
+
"""Converts a string in a sequence of tokens (string), using the tokenizer.
|
240 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE).
|
241 |
+
"""
|
242 |
+
sent = self.nlp([stanza.Document([], text=text)])[0].sentences[0]
|
243 |
+
sent = ' '.join(self.replace_brackets(sent))
|
244 |
+
|
245 |
+
bpe = self.bpe.encode([sent], output_type=yttm.OutputType.SUBWORD)[0]
|
246 |
+
return bpe
|
247 |
+
|
248 |
+
|
249 |
+
def tokenize(self, text: Union[List[str], str], add_special_tokens=True, **kwargs):
|
250 |
+
|
251 |
+
if isinstance(text, list):
|
252 |
+
return list(map(
|
253 |
+
lambda x: self.tokenize(x, add_special_tokens=add_special_tokens, **kwargs),
|
254 |
+
text
|
255 |
+
))
|
256 |
+
res = self._tokenize(text)
|
257 |
+
if add_special_tokens:
|
258 |
+
res = [self.bos_token] + res + [self.eos_token]
|
259 |
+
return res
|
260 |
+
|
261 |
+
def _convert_token_to_id(self, token):
|
262 |
+
""" Converts a token (str) in an id using the vocab. """
|
263 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
264 |
+
|
265 |
+
def _convert_id_to_token(self, index):
|
266 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
267 |
+
return self.decoder.get(index)
|
268 |
+
|
269 |
+
def convert_tokens_to_string(self, tokens: List[str]):
|
270 |
+
"""Converts a sequence of tokens (string) in a single string. """
|
271 |
+
if tokens[0] == self.bos_token:
|
272 |
+
tokens = tokens[1:]
|
273 |
+
if tokens[-1] == self.eos_token:
|
274 |
+
tokens = tokens[:-1]
|
275 |
+
return self.bpe.decode(list(map(self.bpe.subword_to_id, tokens)))[0]
|
276 |
+
|
277 |
+
#@classmethod
|
278 |
+
#def from_pretrained(self, cls, **kwargs):
|
279 |
+
# """Load from file. Actually only call __init__"""
|
280 |
+
# return cls(**kwargs)
|
281 |
+
|
282 |
+
def save_pretrained(
|
283 |
+
self,
|
284 |
+
save_directory: Union[str, os.PathLike],
|
285 |
+
legacy_format: Optional[bool] = None,
|
286 |
+
filename_prefix: Optional[str] = None,
|
287 |
+
push_to_hub: bool = False,
|
288 |
+
**kwargs,
|
289 |
+
) -> Tuple[str]:
|
290 |
+
|
291 |
+
"""
|
292 |
+
Save the full tokenizer state.
|
293 |
+
|
294 |
+
|
295 |
+
This method make sure the full tokenizer can then be re-loaded using the
|
296 |
+
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method..
|
297 |
+
|
298 |
+
Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for
|
299 |
+
instance, modifying `tokenizer.do_lower_case` after creation).
|
300 |
+
|
301 |
+
Args:
|
302 |
+
save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved.
|
303 |
+
legacy_format (`bool`, *optional*):
|
304 |
+
Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
|
305 |
+
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
|
306 |
+
added_tokens files.
|
307 |
+
|
308 |
+
If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with
|
309 |
+
"slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be
|
310 |
+
loaded in the corresponding "slow" tokenizer.
|
311 |
+
|
312 |
+
If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value
|
313 |
+
error is raised.
|
314 |
+
filename_prefix: (`str`, *optional*):
|
315 |
+
A prefix to add to the names of the files saved by the tokenizer.
|
316 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
317 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
318 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
319 |
+
namespace).
|
320 |
+
kwargs:
|
321 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
A tuple of `str`: The files saved.
|
325 |
+
"""
|
326 |
+
if os.path.isfile(save_directory):
|
327 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
328 |
+
return
|
329 |
+
|
330 |
+
os.makedirs(save_directory, exist_ok=True)
|
331 |
+
|
332 |
+
if push_to_hub:
|
333 |
+
commit_message = kwargs.pop("commit_message", None)
|
334 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
335 |
+
repo_id, token = self._create_repo(repo_id, **kwargs)
|
336 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
337 |
+
|
338 |
+
special_tokens_map_file = os.path.join(
|
339 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
|
340 |
+
)
|
341 |
+
tokenizer_config_file = os.path.join(
|
342 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
|
343 |
+
)
|
344 |
+
|
345 |
+
tokenizer_config = copy.deepcopy(self.init_kwargs)
|
346 |
+
|
347 |
+
# TODO: Ensure the modified attributes (those are also in the __init__ kwargs) will give identical tokenizers
|
348 |
+
# target_keys = self.init_kwargs.keys()
|
349 |
+
target_keys = ["model_max_length"]
|
350 |
+
for k in target_keys:
|
351 |
+
if hasattr(self, k):
|
352 |
+
tokenizer_config[k] = getattr(self, k)
|
353 |
+
|
354 |
+
if len(self.init_inputs) > 0:
|
355 |
+
tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
|
356 |
+
for file_id in self.vocab_files_names.keys():
|
357 |
+
tokenizer_config.pop(file_id, None)
|
358 |
+
|
359 |
+
# Sanitize AddedTokens
|
360 |
+
def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
|
361 |
+
if isinstance(obj, AddedToken):
|
362 |
+
out = obj.__getstate__()
|
363 |
+
if add_type_field:
|
364 |
+
out["__type"] = "AddedToken"
|
365 |
+
return out
|
366 |
+
elif isinstance(obj, (list, tuple)):
|
367 |
+
return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
|
368 |
+
elif isinstance(obj, dict):
|
369 |
+
return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
|
370 |
+
return obj
|
371 |
+
|
372 |
+
# add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
|
373 |
+
tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
|
374 |
+
|
375 |
+
# Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
|
376 |
+
tokenizer_class = self.__class__.__name__
|
377 |
+
# Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
|
378 |
+
if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
|
379 |
+
tokenizer_class = tokenizer_class[:-4]
|
380 |
+
tokenizer_config["tokenizer_class"] = tokenizer_class
|
381 |
+
|
382 |
+
|
383 |
+
if getattr(self, "_auto_map", None) is not None:
|
384 |
+
tokenizer_config["auto_map"] = self._auto_map
|
385 |
+
if getattr(self, "_processor_class", None) is not None:
|
386 |
+
tokenizer_config["processor_class"] = self._processor_class
|
387 |
+
|
388 |
+
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
|
389 |
+
# loaded from the Hub.
|
390 |
+
if self._auto_class is not None:
|
391 |
+
custom_object_save(self, save_directory, config=tokenizer_config)
|
392 |
+
|
393 |
+
#tokenizer_config["vocab_file"] = "vocab.txt"
|
394 |
+
#tokenizer_config["bpe_model"] = "bpe.model"
|
395 |
+
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
|
396 |
+
out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
397 |
+
f.write(out_str)
|
398 |
+
logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
|
399 |
+
|
400 |
+
# Sanitize AddedTokens in special_tokens_map
|
401 |
+
write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
|
402 |
+
with open(special_tokens_map_file, "w", encoding="utf-8") as f:
|
403 |
+
out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
404 |
+
f.write(out_str)
|
405 |
+
logger.info(f"Special tokens file saved in {special_tokens_map_file}")
|
406 |
+
|
407 |
+
file_names = (tokenizer_config_file, special_tokens_map_file)
|
408 |
+
save_files = self._save_pretrained(
|
409 |
+
save_directory=save_directory,
|
410 |
+
file_names=file_names,
|
411 |
+
legacy_format=legacy_format,
|
412 |
+
filename_prefix=filename_prefix,
|
413 |
+
)
|
414 |
+
|
415 |
+
|
416 |
+
|
417 |
+
if push_to_hub:
|
418 |
+
self._upload_modified_files(
|
419 |
+
save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token
|
420 |
+
)
|
421 |
+
|
422 |
+
return save_files
|
423 |
+
|
424 |
+
def _save_pretrained(
|
425 |
+
self,
|
426 |
+
save_directory: Union[str, os.PathLike],
|
427 |
+
file_names: Tuple[str],
|
428 |
+
legacy_format: Optional[bool] = None,
|
429 |
+
filename_prefix: Optional[str] = None,
|
430 |
+
) -> Tuple[str]:
|
431 |
+
"""
|
432 |
+
Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens.
|
433 |
+
|
434 |
+
Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the
|
435 |
+
specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`]
|
436 |
+
"""
|
437 |
+
if legacy_format is False:
|
438 |
+
raise ValueError(
|
439 |
+
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
|
440 |
+
)
|
441 |
+
|
442 |
+
save_directory = str(save_directory)
|
443 |
+
|
444 |
+
added_tokens_file = os.path.join(
|
445 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
|
446 |
+
)
|
447 |
+
added_vocab = self.get_added_vocab()
|
448 |
+
if added_vocab:
|
449 |
+
with open(added_tokens_file, "w", encoding="utf-8") as f:
|
450 |
+
out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
451 |
+
f.write(out_str)
|
452 |
+
logger.info(f"added tokens file saved in {added_tokens_file}")
|
453 |
+
vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix)
|
454 |
+
|
455 |
+
return file_names + vocab_files + (added_tokens_file,)
|
456 |
+
|
457 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"flaubert2_tokenizer.FB2Tokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"bos_token": "<s>",
|
9 |
+
"cls_token": "<s>",
|
10 |
+
"eos_token": "</s>",
|
11 |
+
"mask_token": "[MASK]",
|
12 |
+
"model_max_length": 512,
|
13 |
+
"pad_token": "[PAD]",
|
14 |
+
"sep_token": "</s>",
|
15 |
+
"tokenizer_class": "FB2Tokenizer",
|
16 |
+
"unk_token": "[UNK]"
|
17 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|