Upload model
Browse files- config.json +61 -0
- flaubert2_configuration.py +84 -0
- flaubert2_model.py +525 -0
- linformer.py +319 -0
- multihead_linear_attention.py +476 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/getalp/segonnev/models/multi-domains/FL_multidomains_lin256_base_512_768_lm_LR7e-4//HF-sequence_classification",
|
3 |
+
"activation": "relu",
|
4 |
+
"add_bias_kv": false,
|
5 |
+
"add_pooling_layer": false,
|
6 |
+
"add_zero_attn": false,
|
7 |
+
"architectures": [
|
8 |
+
"Flaubert2ModelForSequenceClassification"
|
9 |
+
],
|
10 |
+
"attention_probs_dropout_prob": 0.1,
|
11 |
+
"auto_map": {
|
12 |
+
"AutoConfig": "flaubert2_configuration.Flaubert2Config",
|
13 |
+
"AutoModelForSequenceClassification": "flaubert2_model.Flaubert2ModelForSequenceClassification"
|
14 |
+
},
|
15 |
+
"bias": true,
|
16 |
+
"bos_token_id": 0,
|
17 |
+
"classifier_dropout": null,
|
18 |
+
"compress_layer": 1,
|
19 |
+
"compressed": 2,
|
20 |
+
"dim_feedforward": 4096,
|
21 |
+
"dropout": 0.1,
|
22 |
+
"embed_dim": 768,
|
23 |
+
"encoder_attention_heads": 16,
|
24 |
+
"encoder_decoder_attention": false,
|
25 |
+
"encoder_embed_dim": 768,
|
26 |
+
"encoder_ffn_embed_dim": 4096,
|
27 |
+
"encoder_normalize_before": true,
|
28 |
+
"eos_token_id": 2,
|
29 |
+
"freeze_compress": 0,
|
30 |
+
"hidden_act": "gelu",
|
31 |
+
"hidden_dropout_prob": 0.1,
|
32 |
+
"hidden_size": 768,
|
33 |
+
"initializer_range": 0.02,
|
34 |
+
"intermediate_act_fn": "gelu",
|
35 |
+
"intermediate_size": 4096,
|
36 |
+
"layer_norm_eps": 1e-05,
|
37 |
+
"layernorm_embedding": false,
|
38 |
+
"max_position_embeddings": 514,
|
39 |
+
"max_positions": 512,
|
40 |
+
"model_type": "flaubert2",
|
41 |
+
"num_attention_heads": 12,
|
42 |
+
"num_heads": 16,
|
43 |
+
"num_hidden_layers": 12,
|
44 |
+
"num_layers": 12,
|
45 |
+
"pad_token_id": 1,
|
46 |
+
"position_embedding_type": "learned",
|
47 |
+
"q_noise": 0,
|
48 |
+
"qn_block_size": 8,
|
49 |
+
"quant_noise_pq": 0.0,
|
50 |
+
"quant_noise_pq_block_size": 8,
|
51 |
+
"quant_noise_scalar": 0,
|
52 |
+
"self_attention": true,
|
53 |
+
"shared_kv_compressed": 1,
|
54 |
+
"shared_layer_kv_compressed": 1,
|
55 |
+
"torch_dtype": "float32",
|
56 |
+
"transformers_version": "4.30.1",
|
57 |
+
"type_vocab_size": 2,
|
58 |
+
"untie_weights_roberta": false,
|
59 |
+
"use_cache": true,
|
60 |
+
"vocab_size": 49993
|
61 |
+
}
|
flaubert2_configuration.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.models.roberta.modeling_roberta import RobertaConfig
|
3 |
+
|
4 |
+
class Flaubert2Config(RobertaConfig):
|
5 |
+
model_type = "flaubert2"
|
6 |
+
|
7 |
+
def __init__(self, compress_layer= 1,
|
8 |
+
shared_layer_kv_compressed=1,
|
9 |
+
shared_kv_compressed=0,
|
10 |
+
max_positions=512,
|
11 |
+
max_position_embeddings=512,
|
12 |
+
compressed=4,
|
13 |
+
vocab_size=30522,
|
14 |
+
freeze_compress=0,
|
15 |
+
embed_dim=768,
|
16 |
+
num_heads=16,
|
17 |
+
dim_feedforward=4096,
|
18 |
+
dropout=0.1,
|
19 |
+
activation="relu",
|
20 |
+
layer_norm_eps=1e-05,
|
21 |
+
self_attention=True,
|
22 |
+
encoder_decoder_attention=False,
|
23 |
+
bias=True,
|
24 |
+
q_noise=0,
|
25 |
+
qn_block_size=8,
|
26 |
+
add_bias_kv=False,
|
27 |
+
add_zero_attn=False,
|
28 |
+
num_layers=12,
|
29 |
+
untie_weights_roberta=False,
|
30 |
+
layernorm_embedding=False,
|
31 |
+
encoder_normalize_before=False,
|
32 |
+
encoder_embed_dim=768,
|
33 |
+
encoder_attention_heads=12,
|
34 |
+
quant_noise_pq=0.0,
|
35 |
+
quant_noise_pq_block_size=8,
|
36 |
+
quant_noise_scalar=0,
|
37 |
+
encoder_ffn_embed_dim=4096,
|
38 |
+
add_pooling_layer=False,
|
39 |
+
intermediate_size=4096,
|
40 |
+
intermediate_act_fn="relu",
|
41 |
+
hidden_act = "relu",
|
42 |
+
output_hidden_states=False,
|
43 |
+
position_embedding_type="learned",
|
44 |
+
**kwargs):
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
self.add_pooling_layer = add_pooling_layer
|
48 |
+
self.compress_layer = compress_layer
|
49 |
+
self.shared_layer_kv_compressed = shared_layer_kv_compressed
|
50 |
+
self.shared_kv_compressed = shared_kv_compressed
|
51 |
+
self.max_positions = max_positions
|
52 |
+
self.max_position_embeddings = max_position_embeddings
|
53 |
+
self.compressed = compressed
|
54 |
+
self.freeze_compress = freeze_compress
|
55 |
+
self.embed_dim = embed_dim
|
56 |
+
self.num_heads = num_heads
|
57 |
+
self.dim_feedforward=dim_feedforward
|
58 |
+
self.dropout = dropout
|
59 |
+
self.activation= activation
|
60 |
+
self.layer_norm_eps = layer_norm_eps
|
61 |
+
self.self_attention = self_attention
|
62 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
63 |
+
self.bias = bias
|
64 |
+
self.q_noise = q_noise
|
65 |
+
self.qn_block_size = qn_block_size
|
66 |
+
self.add_bias_kv = add_bias_kv
|
67 |
+
self.add_zero_attn = add_zero_attn
|
68 |
+
self.num_layers = num_layers
|
69 |
+
self.untie_weights_roberta = untie_weights_roberta
|
70 |
+
self.layernorm_embedding=layernorm_embedding
|
71 |
+
self.encoder_embed_dim = encoder_embed_dim
|
72 |
+
self.encoder_attention_heads=encoder_attention_heads
|
73 |
+
self.quant_noise_pq = quant_noise_pq
|
74 |
+
self.quant_noise_pq_block_size=quant_noise_pq_block_size
|
75 |
+
self.quant_noise_scalar=quant_noise_scalar
|
76 |
+
self.encoder_normalize_before=encoder_normalize_before
|
77 |
+
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
|
78 |
+
self.vocab_size = vocab_size
|
79 |
+
self.intermediate_size = intermediate_size
|
80 |
+
self.intermediate_act_fn = intermediate_act_fn
|
81 |
+
self.output_hidden_states = output_hidden_states
|
82 |
+
self.hidden_act = hidden_act
|
83 |
+
self.position_embedding_type = position_embedding_type
|
84 |
+
self.encoder_normalize_before = encoder_normalize_before
|
flaubert2_model.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from transformers import RobertaModel, RobertaConfig, RobertaForMaskedLM, RobertaLMHead
|
2 |
+
#from linformer import LinformerTransformerEncoder, LinformerTransformerEncoderLayer, LinformerTransformerEncoderFS, LinformerTransformerEncoderLayerFS
|
3 |
+
#import linformer
|
4 |
+
from .linformer import LinformerTransformerEncoderLayer
|
5 |
+
from .flaubert2_configuration import Flaubert2Config
|
6 |
+
from transformers.models.roberta.modeling_roberta import RobertaEncoder, RobertaConfig, RobertaModel, RobertaLMHead, RobertaForMaskedLM, RobertaEmbeddings, RobertaForTokenClassification, RobertaForSequenceClassification
|
7 |
+
import torch.nn as nn
|
8 |
+
import math
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.nn import LayerNorm
|
11 |
+
import torch
|
12 |
+
from typing import List, Optional, Tuple, Union
|
13 |
+
|
14 |
+
from fairseq.models.roberta import (
|
15 |
+
RobertaModel as RobertModel,
|
16 |
+
RobertaEncoder as RobertaEncoderFS
|
17 |
+
)
|
18 |
+
|
19 |
+
from transformers.modeling_outputs import (
|
20 |
+
MaskedLMOutput,
|
21 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class Flaubert2ModelForSequenceClassification(RobertaForSequenceClassification):
|
27 |
+
|
28 |
+
config_class = Flaubert2Config
|
29 |
+
|
30 |
+
def __init__(self, config, **kwargs):
|
31 |
+
base_model_prefix = "flaubert2"
|
32 |
+
|
33 |
+
super().__init__(config, **kwargs)
|
34 |
+
|
35 |
+
#self.encoder = Flaubert2Model(config, add_pooling_layer=False)
|
36 |
+
self.roberta = Flaubert2Model(config, add_pooling_layer=False)
|
37 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
38 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
39 |
+
self.sbo_head = self.build_sbo_head(config)
|
40 |
+
|
41 |
+
def build_sbo_head(self, config):
|
42 |
+
return SBOHead(
|
43 |
+
config,
|
44 |
+
embedding_weights=(
|
45 |
+
self.roberta.embeddings.word_embeddings.weight
|
46 |
+
if not config.untie_weights_roberta
|
47 |
+
else None
|
48 |
+
)
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
class Flaubert2ModelForTokenClassification(RobertaForTokenClassification):
|
53 |
+
|
54 |
+
config_class = Flaubert2Config
|
55 |
+
|
56 |
+
def __init__(self, config, **kwargs):
|
57 |
+
base_model_prefix = "flaubert2"
|
58 |
+
|
59 |
+
super().__init__(config, **kwargs)
|
60 |
+
|
61 |
+
#self.encoder = Flaubert2Model(config, add_pooling_layer=False)
|
62 |
+
self.roberta = Flaubert2Model(config, add_pooling_layer=False)
|
63 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
64 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
65 |
+
self.sbo_head = self.build_sbo_head(config)
|
66 |
+
|
67 |
+
def build_sbo_head(self, config):
|
68 |
+
return SBOHead(
|
69 |
+
config,
|
70 |
+
embedding_weights=(
|
71 |
+
self.roberta.embeddings.word_embeddings.weight
|
72 |
+
if not config.untie_weights_roberta
|
73 |
+
else None
|
74 |
+
)
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
class Flaubert2ModelForMaskedLM(RobertaForMaskedLM):
|
79 |
+
|
80 |
+
config_class = Flaubert2Config
|
81 |
+
|
82 |
+
def __init__(self, config, **kwargs):
|
83 |
+
base_model_prefix = "flaubert2"
|
84 |
+
|
85 |
+
super().__init__(config, **kwargs)
|
86 |
+
|
87 |
+
#self.encoder = Flaubert2Model(config, add_pooling_layer=False)
|
88 |
+
self.roberta = Flaubert2Model(config, add_pooling_layer=False)
|
89 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
90 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
91 |
+
self.sbo_head = self.build_sbo_head(config)
|
92 |
+
|
93 |
+
def build_sbo_head(self, config):
|
94 |
+
return SBOHead(
|
95 |
+
config,
|
96 |
+
embedding_weights=(
|
97 |
+
self.roberta.embeddings.word_embeddings.weight
|
98 |
+
if not config.untie_weights_roberta
|
99 |
+
else None
|
100 |
+
)
|
101 |
+
)
|
102 |
+
|
103 |
+
class Flaubert2ModelForMaskedLMFS(RobertaForMaskedLM):
|
104 |
+
|
105 |
+
def __init__(self, config, dictionary, **kwargs):
|
106 |
+
config_class = Flaubert2Config
|
107 |
+
base_model_prefix = "flaubert2"
|
108 |
+
|
109 |
+
super().__init__(config, **kwargs)
|
110 |
+
|
111 |
+
#self.encoder = Flaubert2Model(config, add_pooling_layer=False)
|
112 |
+
#self.roberta = Flaubert2ModelFS(config, dictionary, add_pooling_layer=False)
|
113 |
+
self.roberta =FlaubertEncoder(config, dictionary)
|
114 |
+
#self.encoder =
|
115 |
+
#self.encoder = LinformerTransformerEncoder(config)
|
116 |
+
#self.sbo_head = self.build_sbo_head(config)
|
117 |
+
|
118 |
+
def build_sbo_head(self, config):
|
119 |
+
return SBOHead(
|
120 |
+
config,
|
121 |
+
embedding_weights=(
|
122 |
+
self.roberta.embeddings.word_embeddings.weight
|
123 |
+
if not config.untie_weights_roberta
|
124 |
+
else None
|
125 |
+
)
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
class Flaubert2Embeddings(RobertaEmbeddings):
|
131 |
+
|
132 |
+
def __init__(self, config, **kwargs):
|
133 |
+
config_class = Flaubert2Config
|
134 |
+
base_model_prefix = "flaubert2"
|
135 |
+
super().__init__(config, **kwargs)
|
136 |
+
|
137 |
+
def forward(
|
138 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
139 |
+
):
|
140 |
+
if position_ids is None:
|
141 |
+
if input_ids is not None:
|
142 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
143 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
144 |
+
else:
|
145 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
146 |
+
|
147 |
+
if input_ids is not None:
|
148 |
+
input_shape = input_ids.size()
|
149 |
+
else:
|
150 |
+
input_shape = inputs_embeds.size()[:-1]
|
151 |
+
|
152 |
+
seq_length = input_shape[1]
|
153 |
+
|
154 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
155 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
156 |
+
# issue #5664
|
157 |
+
if token_type_ids is None:
|
158 |
+
if hasattr(self, "token_type_ids"):
|
159 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
160 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
161 |
+
token_type_ids = buffered_token_type_ids_expanded
|
162 |
+
else:
|
163 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
164 |
+
|
165 |
+
if inputs_embeds is None:
|
166 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
167 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
168 |
+
|
169 |
+
embeddings = inputs_embeds + token_type_embeddings
|
170 |
+
#if self.position_embedding_type == "absolute":
|
171 |
+
position_embeddings = self.position_embeddings(position_ids)
|
172 |
+
#else:
|
173 |
+
|
174 |
+
embeddings += position_embeddings
|
175 |
+
#embeddings = self.LayerNorm(embeddings)
|
176 |
+
embeddings = self.dropout(embeddings)
|
177 |
+
return embeddings
|
178 |
+
|
179 |
+
class Flaubert2Encoder(RobertaEncoder):
|
180 |
+
|
181 |
+
def __init__(self, args):
|
182 |
+
compress_layer = None
|
183 |
+
if args.shared_layer_kv_compressed == 1 and compress_layer is None:
|
184 |
+
compress_layer = nn.Linear(
|
185 |
+
args.max_positions,
|
186 |
+
args.max_positions // args.compressed
|
187 |
+
)
|
188 |
+
# intialize parameters for compressed layer
|
189 |
+
nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
|
190 |
+
if args.freeze_compress == 1:
|
191 |
+
compress_layer.weight.requires_grad = False
|
192 |
+
compress_layer = compress_layer
|
193 |
+
|
194 |
+
super().__init__(args)
|
195 |
+
|
196 |
+
self.layer = nn.ModuleList([LinformerTransformerEncoderLayer(args, compress_layer) for _ in range(args.num_layers)])
|
197 |
+
self.compress_layer = compress_layer
|
198 |
+
|
199 |
+
if args.encoder_normalize_before:
|
200 |
+
self.layer_norm = LayerNorm(args.embed_dim)
|
201 |
+
else:
|
202 |
+
self.layer_norm = None
|
203 |
+
|
204 |
+
self.lm_head = None
|
205 |
+
|
206 |
+
def forward(
|
207 |
+
self,
|
208 |
+
hidden_states: torch.Tensor,
|
209 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
210 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
211 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
212 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
213 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
214 |
+
use_cache: Optional[bool] = None,
|
215 |
+
output_attentions: Optional[bool] = False,
|
216 |
+
output_hidden_states: Optional[bool] = False,
|
217 |
+
return_dict: Optional[bool] = True,
|
218 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
219 |
+
|
220 |
+
x = super().forward(hidden_states=hidden_states,
|
221 |
+
attention_mask=attention_mask,
|
222 |
+
head_mask=head_mask,
|
223 |
+
encoder_hidden_states=encoder_hidden_states,
|
224 |
+
encoder_attention_mask=encoder_attention_mask,
|
225 |
+
past_key_values=past_key_values,
|
226 |
+
use_cache=use_cache,
|
227 |
+
output_attentions=output_attentions,
|
228 |
+
output_hidden_states=output_hidden_states,
|
229 |
+
return_dict=return_dict)
|
230 |
+
|
231 |
+
|
232 |
+
if self.layer_norm is not None:
|
233 |
+
x.last_hidden_state = self.layer_norm(x.last_hidden_state)
|
234 |
+
|
235 |
+
return x
|
236 |
+
|
237 |
+
def build_encoder(self, args, dictionary, embed_tokens):
|
238 |
+
encoder = LinformerTransformerEncoder(args)
|
239 |
+
return encoder
|
240 |
+
if args.use_linformer:
|
241 |
+
encoder = LinformerTransformerEncoder(args, dictionary, embed_tokens)
|
242 |
+
elif args.use_fft:
|
243 |
+
encoder = FourierTransformerEncoder(args, dictionary, embed_tokens)
|
244 |
+
else:
|
245 |
+
encoder = TransformerEncoder(args, dictionary, embed_tokens)
|
246 |
+
|
247 |
+
encoder.apply(init_bert_params)
|
248 |
+
|
249 |
+
return encoder
|
250 |
+
|
251 |
+
def output_layer(self, features, masked_tokens=None, pairs=None, **unused):
|
252 |
+
lm_out = self.lm_head(features, masked_tokens)
|
253 |
+
if pairs is not None:
|
254 |
+
sbo_out = self.sbo_head(features, pairs)
|
255 |
+
return lm_out, sbo_out
|
256 |
+
else:
|
257 |
+
return lm_out
|
258 |
+
|
259 |
+
|
260 |
+
class Flaubert2Model(RobertaModel):
|
261 |
+
|
262 |
+
def __init__(self, config, **kwargs):
|
263 |
+
onfig_class = Flaubert2Config
|
264 |
+
base_model_prefix = "flaubert2"
|
265 |
+
|
266 |
+
super().__init__(config, **kwargs)
|
267 |
+
self.embeddings = Flaubert2Embeddings(config)
|
268 |
+
self.encoder = Flaubert2Encoder(config)
|
269 |
+
# Copied from modeling_roberta.py
|
270 |
+
# Add transpose of embeddings as implemented in fairseq
|
271 |
+
def forward(
|
272 |
+
self,
|
273 |
+
input_ids: Optional[torch.Tensor] = None,
|
274 |
+
attention_mask: Optional[torch.Tensor] = None,
|
275 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
276 |
+
position_ids: Optional[torch.Tensor] = None,
|
277 |
+
head_mask: Optional[torch.Tensor] = None,
|
278 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
279 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
280 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
281 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
282 |
+
use_cache: Optional[bool] = None,
|
283 |
+
output_attentions: Optional[bool] = None,
|
284 |
+
output_hidden_states: Optional[bool] = None,
|
285 |
+
return_dict: Optional[bool] = None,
|
286 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
287 |
+
r"""
|
288 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
289 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
290 |
+
the model is configured as a decoder.
|
291 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
292 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
293 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
294 |
+
|
295 |
+
- 1 for tokens that are **not masked**,
|
296 |
+
- 0 for tokens that are **masked**.
|
297 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
298 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
299 |
+
|
300 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
301 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
302 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
303 |
+
use_cache (`bool`, *optional*):
|
304 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
305 |
+
`past_key_values`).
|
306 |
+
"""
|
307 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
308 |
+
output_hidden_states = (
|
309 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
310 |
+
)
|
311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
312 |
+
|
313 |
+
if self.config.is_decoder:
|
314 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
315 |
+
else:
|
316 |
+
use_cache = False
|
317 |
+
|
318 |
+
if input_ids is not None and inputs_embeds is not None:
|
319 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
320 |
+
elif input_ids is not None:
|
321 |
+
input_shape = input_ids.size()
|
322 |
+
elif inputs_embeds is not None:
|
323 |
+
input_shape = inputs_embeds.size()[:-1]
|
324 |
+
else:
|
325 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
326 |
+
|
327 |
+
batch_size, seq_length = input_shape
|
328 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
329 |
+
|
330 |
+
# past_key_values_length
|
331 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
332 |
+
|
333 |
+
if attention_mask is None:
|
334 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
335 |
+
|
336 |
+
if token_type_ids is None:
|
337 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
338 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
339 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
340 |
+
token_type_ids = buffered_token_type_ids_expanded
|
341 |
+
else:
|
342 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
343 |
+
|
344 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
345 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
346 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
347 |
+
|
348 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
349 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
350 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
351 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
352 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
353 |
+
if encoder_attention_mask is None:
|
354 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
355 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
356 |
+
else:
|
357 |
+
encoder_extended_attention_mask = None
|
358 |
+
|
359 |
+
# Prepare head mask if needed
|
360 |
+
# 1.0 in head_mask indicate we keep the head
|
361 |
+
# attention_probs has shape bsz x n_heads x N x N
|
362 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
363 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
364 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
365 |
+
|
366 |
+
embedding_output = self.embeddings(
|
367 |
+
input_ids=input_ids,
|
368 |
+
position_ids=position_ids,
|
369 |
+
token_type_ids=token_type_ids,
|
370 |
+
inputs_embeds=inputs_embeds,
|
371 |
+
past_key_values_length=past_key_values_length,
|
372 |
+
)
|
373 |
+
|
374 |
+
|
375 |
+
embedding_output = embedding_output.transpose(0,1)
|
376 |
+
encoder_outputs = self.encoder(
|
377 |
+
embedding_output,
|
378 |
+
attention_mask=extended_attention_mask,
|
379 |
+
head_mask=head_mask,
|
380 |
+
encoder_hidden_states=encoder_hidden_states,
|
381 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
382 |
+
past_key_values=past_key_values,
|
383 |
+
use_cache=use_cache,
|
384 |
+
output_attentions=output_attentions,
|
385 |
+
output_hidden_states=output_hidden_states,
|
386 |
+
)
|
387 |
+
|
388 |
+
sequence_output = encoder_outputs[0].transpose(0,1)
|
389 |
+
|
390 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
391 |
+
|
392 |
+
if not return_dict:
|
393 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
394 |
+
|
395 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
396 |
+
last_hidden_state=sequence_output,
|
397 |
+
pooler_output=pooled_output,
|
398 |
+
past_key_values=encoder_outputs.past_key_values,
|
399 |
+
hidden_states=encoder_outputs.hidden_states,
|
400 |
+
attentions=encoder_outputs.attentions,
|
401 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
402 |
+
)
|
403 |
+
|
404 |
+
class SBOLayer(nn.Module):
|
405 |
+
|
406 |
+
def __init__(self, input_size, hidden_size, activation, export):
|
407 |
+
super().__init__()
|
408 |
+
self.layer = nn.Linear(input_size, hidden_size)
|
409 |
+
self.activ = get_activation_fn(activation)
|
410 |
+
self.norm = LayerNorm(hidden_size)
|
411 |
+
|
412 |
+
def forward(self, x):
|
413 |
+
return self.norm(self.activ(self.layer(x)))
|
414 |
+
|
415 |
+
class SBONetwork(nn.Module):
|
416 |
+
|
417 |
+
def __init__(self, input_size, hidden_size, activation, export):
|
418 |
+
super().__init__()
|
419 |
+
self.layers = nn.ModuleList([
|
420 |
+
self.build_sbo_layer(input_size, hidden_size, activation, export),
|
421 |
+
self.build_sbo_layer(hidden_size, hidden_size, activation, export)
|
422 |
+
])
|
423 |
+
self.layers = nn.Sequential(*self.layers)
|
424 |
+
|
425 |
+
def build_sbo_layer(self, input_size, output_size, activation, export):
|
426 |
+
return SBOLayer(input_size, output_size, activation, export)
|
427 |
+
|
428 |
+
def forward(self, x):
|
429 |
+
return self.layers(x)
|
430 |
+
|
431 |
+
|
432 |
+
class SBOHead(nn.Module):
|
433 |
+
|
434 |
+
def __init__(self, args, embedding_weights, max_targets=20, position_embedding_size=200):
|
435 |
+
super().__init__()
|
436 |
+
|
437 |
+
self.position_embeddings = nn.Embedding(max_targets, position_embedding_size)
|
438 |
+
|
439 |
+
export = getattr(args, "export", False)
|
440 |
+
hidden_size = args.embed_dim
|
441 |
+
input_size = hidden_size * 2 + position_embedding_size
|
442 |
+
activation = getattr(args, "activation_fn", "relu") or "relu"
|
443 |
+
|
444 |
+
self.mlp_layer_norm = self.build_sbo_network(input_size, hidden_size, activation, export)
|
445 |
+
|
446 |
+
# The output weights are the same as the input embeddings, but there is
|
447 |
+
# an output-only bias for each token.
|
448 |
+
self.decoder = nn.Linear(
|
449 |
+
embedding_weights.size(1),
|
450 |
+
embedding_weights.size(0),
|
451 |
+
bias=False
|
452 |
+
)
|
453 |
+
if embedding_weights is not None:
|
454 |
+
self.decoder.weight = embedding_weights
|
455 |
+
|
456 |
+
self.bias = nn.Parameter(torch.zeros(embedding_weights.size(0)))
|
457 |
+
self.max_targets = max_targets
|
458 |
+
|
459 |
+
def build_sbo_network(self, input_size, hidden_size, activation, export):
|
460 |
+
return SBONetwork(input_size, hidden_size, activation, export)
|
461 |
+
|
462 |
+
def forward(self, hidden_states, pairs):
|
463 |
+
bs, num_pairs, _ = pairs.size()
|
464 |
+
bs, seq_len, dim = hidden_states.size()
|
465 |
+
# pair indices: (bs, num_pairs)
|
466 |
+
left, right = pairs[:,:, 0], pairs[:, :, 1]
|
467 |
+
# (bs, num_pairs, dim)
|
468 |
+
left_hidden = torch.gather(hidden_states, 1, left.unsqueeze(2).repeat(1, 1, dim))
|
469 |
+
# pair states: bs * num_pairs, max_targets, dim
|
470 |
+
left_hidden = left_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)
|
471 |
+
|
472 |
+
right_hidden = torch.gather(hidden_states, 1, right.unsqueeze(2).repeat(1, 1, dim))
|
473 |
+
# bs * num_pairs, max_targets, dim
|
474 |
+
right_hidden = right_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)
|
475 |
+
|
476 |
+
# (max_targets, dim)
|
477 |
+
position_embeddings = self.position_embeddings.weight
|
478 |
+
|
479 |
+
z = torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1)
|
480 |
+
|
481 |
+
hidden_states = self.mlp_layer_norm(torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1))
|
482 |
+
# target scores : bs * num_pairs, max_targets, vocab_size
|
483 |
+
target_scores = self.decoder(hidden_states) + self.bias
|
484 |
+
return target_scores
|
485 |
+
|
486 |
+
|
487 |
+
def get_activation_fn(activation):
|
488 |
+
"""Returns the activation function corresponding to `activation`"""
|
489 |
+
|
490 |
+
if activation == "relu":
|
491 |
+
return F.relu
|
492 |
+
elif activation == "relu_squared":
|
493 |
+
return F.relu_squared
|
494 |
+
elif activation == "gelu":
|
495 |
+
return F.gelu
|
496 |
+
elif activation == "gelu_fast":
|
497 |
+
deprecation_warning(
|
498 |
+
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
|
499 |
+
)
|
500 |
+
return F.gelu_accurate
|
501 |
+
elif activation == "gelu_accurate":
|
502 |
+
return F.gelu_accurate
|
503 |
+
elif activation == "tanh":
|
504 |
+
return torch.tanh
|
505 |
+
elif activation == "linear":
|
506 |
+
return lambda x: x
|
507 |
+
elif activation == "swish":
|
508 |
+
return torch.nn.SiLU
|
509 |
+
else:
|
510 |
+
raise RuntimeError("--activation-fn {} not supported".format(activation))
|
511 |
+
|
512 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
513 |
+
"""
|
514 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
515 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
x: torch.Tensor x:
|
519 |
+
|
520 |
+
Returns: torch.Tensor
|
521 |
+
"""
|
522 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
523 |
+
mask = input_ids.ne(padding_idx).int()
|
524 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
525 |
+
return incremental_indices.long() + padding_idx
|
linformer.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from fairseq import utils
|
8 |
+
from fairseq.models.transformer import *
|
9 |
+
from typing import Callable, List, Optional, Set, Tuple, Union
|
10 |
+
import inspect
|
11 |
+
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
#rom fairseq.models.transformer import TransformerEncoder as TransformerEncoderFS
|
17 |
+
#from fairseq.modules import TransformerEncoderLayer as TransformerEncoderLayerFS
|
18 |
+
|
19 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
20 |
+
|
21 |
+
from .multihead_linear_attention import MultiheadLinearAttention
|
22 |
+
from transformers.models.roberta.modeling_roberta import RobertaEncoder, RobertaConfig, RobertaModel, RobertaLMHead, RobertaForMaskedLM, RobertaLayer
|
23 |
+
|
24 |
+
|
25 |
+
class LinformerTransformerEncoderLayer(RobertaLayer):
|
26 |
+
"""
|
27 |
+
Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained
|
28 |
+
models.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, config, shared_compress_layer):
|
32 |
+
# wrap in a list so it's not automatically registered by PyTorch
|
33 |
+
self.shared_compress_layer = [shared_compress_layer]
|
34 |
+
d_model=config.embed_dim
|
35 |
+
nhead=config.num_heads
|
36 |
+
dim_feedforward=config.dim_feedforward
|
37 |
+
dropout=config.dropout
|
38 |
+
activation=config.activation
|
39 |
+
layer_norm_eps=config.layer_norm_eps
|
40 |
+
|
41 |
+
|
42 |
+
super().__init__(config)
|
43 |
+
self.attention = self.build_self_attention(config.embed_dim, config)
|
44 |
+
self.attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
|
45 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
|
46 |
+
self.output = RobertaOutput(config)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def build_self_attention(self, embed_dim, args):
|
51 |
+
|
52 |
+
attn = MultiheadLinearAttention(
|
53 |
+
embed_dim,
|
54 |
+
args.encoder_attention_heads,
|
55 |
+
dropout=args.dropout,
|
56 |
+
self_attention=True,
|
57 |
+
q_noise=args.quant_noise_pq,
|
58 |
+
qn_block_size=args.quant_noise_pq_block_size,
|
59 |
+
compressed=args.compressed,
|
60 |
+
max_seq_len=args.max_positions,
|
61 |
+
shared_kv_compressed=args.shared_kv_compressed,
|
62 |
+
shared_compress_layer=self.shared_compress_layer[0],
|
63 |
+
freeze_compress=args.freeze_compress,
|
64 |
+
)
|
65 |
+
return attn
|
66 |
+
|
67 |
+
def feed_forward_chunk(self, attention_output):
|
68 |
+
|
69 |
+
residual = attention_output
|
70 |
+
|
71 |
+
x = self.intermediate(attention_output)
|
72 |
+
|
73 |
+
layer_output = self.output(x, residual)
|
74 |
+
|
75 |
+
return layer_output
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
hidden_states: torch.Tensor,
|
80 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
81 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
82 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
83 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
84 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
85 |
+
output_attentions: Optional[bool] = False,
|
86 |
+
) -> Tuple[torch.Tensor]:
|
87 |
+
|
88 |
+
residual = hidden_states
|
89 |
+
|
90 |
+
if self.attn_layer_norm is not None:
|
91 |
+
hidden_states = self.attn_layer_norm(hidden_states)
|
92 |
+
|
93 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
94 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
95 |
+
self_attention_outputs = self.attention(
|
96 |
+
hidden_states,
|
97 |
+
attention_mask,
|
98 |
+
head_mask,
|
99 |
+
output_attentions=output_attentions,
|
100 |
+
past_key_value=self_attn_past_key_value,
|
101 |
+
)
|
102 |
+
attention_output = self_attention_outputs[0]
|
103 |
+
|
104 |
+
# if decoder, the last output is tuple of self-attn cache
|
105 |
+
if self.is_decoder:
|
106 |
+
outputs = self_attention_outputs[1:-1]
|
107 |
+
present_key_value = self_attention_outputs[-1]
|
108 |
+
else:
|
109 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
110 |
+
|
111 |
+
cross_attn_present_key_value = None
|
112 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
113 |
+
if not hasattr(self, "crossattention"):
|
114 |
+
raise ValueError(
|
115 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
116 |
+
" by setting `config.add_cross_attention=True`"
|
117 |
+
)
|
118 |
+
|
119 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
120 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
121 |
+
cross_attention_outputs = self.crossattention(
|
122 |
+
attention_output,
|
123 |
+
attention_mask,
|
124 |
+
head_mask,
|
125 |
+
encoder_hidden_states,
|
126 |
+
encoder_attention_mask,
|
127 |
+
cross_attn_past_key_value,
|
128 |
+
output_attentions,
|
129 |
+
)
|
130 |
+
attention_output = cross_attention_outputs[0]
|
131 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
132 |
+
|
133 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
134 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
135 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
136 |
+
|
137 |
+
attention_output = attention_output + residual
|
138 |
+
|
139 |
+
residual = attention_output
|
140 |
+
|
141 |
+
attention_output = self.final_layer_norm(attention_output)
|
142 |
+
|
143 |
+
layer_output = apply_chunking_to_forward(
|
144 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
145 |
+
)
|
146 |
+
layer_output = layer_output + residual
|
147 |
+
|
148 |
+
outputs = (layer_output,) + outputs
|
149 |
+
|
150 |
+
# if decoder, return the attn key/values as the last output
|
151 |
+
if self.is_decoder:
|
152 |
+
outputs = outputs + (present_key_value,)
|
153 |
+
|
154 |
+
return outputs
|
155 |
+
|
156 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
157 |
+
super().upgrade_state_dict_named(state_dict, name)
|
158 |
+
prefix = name + "." if name != "" else ""
|
159 |
+
|
160 |
+
# some old checkpoints had weight sharing implemented incorrectly
|
161 |
+
# (note: this was correct in the original paper code)
|
162 |
+
if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2:
|
163 |
+
state_dict[f"{prefix}version"] = torch.tensor(1)
|
164 |
+
# check compression layer sharing
|
165 |
+
if f"{prefix}shared_compress_layer.weight" in state_dict:
|
166 |
+
# reinitialize block without sharing compression layer to match
|
167 |
+
# old behavior
|
168 |
+
self.shared_compress_layer = [
|
169 |
+
torch.nn.Linear(
|
170 |
+
self.shared_compress_layer[0].weight.size(1),
|
171 |
+
self.shared_compress_layer[0].weight.size(0),
|
172 |
+
)
|
173 |
+
]
|
174 |
+
self.self_attn = self.build_self_attention(self.embed_dim, self.args)
|
175 |
+
# delete shared_compress_layer, since it's already copied to
|
176 |
+
# self_attn.compress_k.weight
|
177 |
+
del state_dict[f"{prefix}shared_compress_layer.weight"]
|
178 |
+
if f"{prefix}shared_compress_layer.bias" in state_dict:
|
179 |
+
del state_dict[f"{prefix}shared_compress_layer.bias"]
|
180 |
+
|
181 |
+
class RobertaOutput(nn.Module):
|
182 |
+
def __init__(self, config):
|
183 |
+
super().__init__()
|
184 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
185 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
186 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
187 |
+
|
188 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
189 |
+
hidden_states = self.dense(hidden_states)
|
190 |
+
return hidden_states
|
191 |
+
|
192 |
+
hidden_states = self.dropout(hidden_states)
|
193 |
+
x = hidden_states + input_tensor
|
194 |
+
|
195 |
+
return x
|
196 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
197 |
+
|
198 |
+
#hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
199 |
+
return hidden_states
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
class LinformerTransformerEncoder(RobertaEncoder):
|
204 |
+
"""
|
205 |
+
Implementation for a Bi-directional Linformer based Sentence Encoder used
|
206 |
+
in BERT/XLM style pre-trained models.
|
207 |
+
|
208 |
+
This first computes the token embedding using the token embedding matrix,
|
209 |
+
position embeddings (if specified) and segment embeddings
|
210 |
+
(if specified). After applying the specified number of
|
211 |
+
LinformerEncoderLayers, it outputs all the internal states of the
|
212 |
+
encoder as well as the final representation associated with the first
|
213 |
+
token (usually CLS token).
|
214 |
+
|
215 |
+
Input:
|
216 |
+
- tokens: B x T matrix representing sentences
|
217 |
+
- segment_labels: B x T matrix representing segment label for tokens
|
218 |
+
|
219 |
+
Output:
|
220 |
+
- a tuple of the following:
|
221 |
+
- a list of internal model states used to compute the
|
222 |
+
predictions where each tensor has shape T x B x C
|
223 |
+
- sentence representation associated with first input token
|
224 |
+
in format B x C.
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(self, config,**kwargs):
|
228 |
+
compress_layer = None
|
229 |
+
if config.shared_layer_kv_compressed == 1 and compress_layer is None:
|
230 |
+
compress_layer = nn.Linear(
|
231 |
+
config.max_positions,
|
232 |
+
config.max_positions // config.compressed
|
233 |
+
)
|
234 |
+
# intialize parameters for compressed layer
|
235 |
+
nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
|
236 |
+
if config.freeze_compress == 1:
|
237 |
+
compress_layer.weight.requires_grad = False
|
238 |
+
compress_layer = compress_layer
|
239 |
+
#encoder_layer = LinformerTransformerEncoderLayer(config, compress_layer)
|
240 |
+
|
241 |
+
super().__init__(config)
|
242 |
+
|
243 |
+
self.layer = nn.ModuleList([LinformerTransformerEncoderLayer(config, compress_layer) for _ in range(config.num_layers)])
|
244 |
+
self.compress_layer = compress_layer
|
245 |
+
self.layer_norm = nn.LayerNorm(config.embed_dim)
|
246 |
+
|
247 |
+
def apply_chunking_to_forward(
|
248 |
+
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
|
249 |
+
) -> torch.Tensor:
|
250 |
+
"""
|
251 |
+
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
|
252 |
+
`chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
|
253 |
+
|
254 |
+
If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
|
255 |
+
applying `forward_fn` to `input_tensors`.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
forward_fn (`Callable[..., torch.Tensor]`):
|
259 |
+
The forward function of the model.
|
260 |
+
chunk_size (`int`):
|
261 |
+
The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
|
262 |
+
chunk_dim (`int`):
|
263 |
+
The dimension over which the `input_tensors` should be chunked.
|
264 |
+
input_tensors (`Tuple[torch.Tensor]`):
|
265 |
+
The input tensors of `forward_fn` which will be chunked
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
`torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
|
269 |
+
|
270 |
+
|
271 |
+
Examples:
|
272 |
+
|
273 |
+
```python
|
274 |
+
# rename the usual forward() fn to forward_chunk()
|
275 |
+
def forward_chunk(self, hidden_states):
|
276 |
+
hidden_states = self.decoder(hidden_states)
|
277 |
+
return hidden_states
|
278 |
+
|
279 |
+
|
280 |
+
# implement a chunked forward function
|
281 |
+
def forward(self, hidden_states):
|
282 |
+
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
|
283 |
+
```"""
|
284 |
+
|
285 |
+
assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
|
286 |
+
|
287 |
+
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
|
288 |
+
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
|
289 |
+
if num_args_in_forward_chunk_fn != len(input_tensors):
|
290 |
+
raise ValueError(
|
291 |
+
f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
|
292 |
+
"tensors are given"
|
293 |
+
)
|
294 |
+
|
295 |
+
if chunk_size > 0:
|
296 |
+
tensor_shape = input_tensors[0].shape[chunk_dim]
|
297 |
+
for input_tensor in input_tensors:
|
298 |
+
if input_tensor.shape[chunk_dim] != tensor_shape:
|
299 |
+
raise ValueError(
|
300 |
+
f"All input tenors have to be of the same shape: {tensor_shape}, "
|
301 |
+
f"found shape {input_tensor.shape[chunk_dim]}"
|
302 |
+
)
|
303 |
+
|
304 |
+
if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
|
305 |
+
raise ValueError(
|
306 |
+
f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
|
307 |
+
f"size {chunk_size}"
|
308 |
+
)
|
309 |
+
|
310 |
+
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
|
311 |
+
|
312 |
+
# chunk input tensor into tuples
|
313 |
+
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
|
314 |
+
# apply forward fn to every tuple
|
315 |
+
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
|
316 |
+
# concatenate output at same dimension
|
317 |
+
return torch.cat(output_chunks, dim=chunk_dim)
|
318 |
+
|
319 |
+
return forward_fn(*input_tensors)
|
multihead_linear_attention.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from fairseq import utils
|
12 |
+
from fairseq.incremental_decoding_utils import with_incremental_state
|
13 |
+
from fairseq.modules.quant_noise import quant_noise
|
14 |
+
from torch import Tensor, nn
|
15 |
+
from torch.nn import Parameter
|
16 |
+
|
17 |
+
@with_incremental_state
|
18 |
+
class MultiheadLinearAttention(nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
embed_dim,
|
22 |
+
num_heads,
|
23 |
+
kdim=None,
|
24 |
+
vdim=None,
|
25 |
+
dropout=0.0,
|
26 |
+
bias=True,
|
27 |
+
add_bias_kv=False,
|
28 |
+
add_zero_attn=False,
|
29 |
+
self_attention=False,
|
30 |
+
encoder_decoder_attention=False,
|
31 |
+
q_noise=0.0,
|
32 |
+
qn_block_size=8,
|
33 |
+
compressed=1,
|
34 |
+
max_seq_len=256,
|
35 |
+
shared_kv_compressed=0,
|
36 |
+
shared_compress_layer=None,
|
37 |
+
freeze_compress=0,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
self.embed_dim = embed_dim
|
41 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
42 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
43 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
44 |
+
self.num_heads = num_heads
|
45 |
+
self.dropout = dropout
|
46 |
+
self.head_dim = embed_dim // num_heads
|
47 |
+
assert (
|
48 |
+
self.head_dim * num_heads == self.embed_dim
|
49 |
+
), "embed_dim must be divisible by num_heads"
|
50 |
+
self.scaling = self.head_dim ** -0.5
|
51 |
+
|
52 |
+
self.self_attention = self_attention
|
53 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
54 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
55 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
56 |
+
)
|
57 |
+
|
58 |
+
self.k_proj = quant_noise(
|
59 |
+
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
|
60 |
+
)
|
61 |
+
self.v_proj = quant_noise(
|
62 |
+
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
63 |
+
)
|
64 |
+
self.q_proj = quant_noise(
|
65 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
66 |
+
)
|
67 |
+
|
68 |
+
# used for compress sequence to subsequence
|
69 |
+
if shared_compress_layer is None:
|
70 |
+
self.compress_seq_len = max_seq_len // compressed
|
71 |
+
self.compress_k = nn.Linear(max_seq_len, self.compress_seq_len, bias=False)
|
72 |
+
if shared_kv_compressed == 0:
|
73 |
+
self.compress_v = nn.Linear(
|
74 |
+
max_seq_len, self.compress_seq_len, bias=False
|
75 |
+
)
|
76 |
+
self.layerwise_sharing = False
|
77 |
+
else:
|
78 |
+
self.compress_k = shared_compress_layer
|
79 |
+
if shared_kv_compressed == 0:
|
80 |
+
self.compress_v = shared_compress_layer
|
81 |
+
self.layerwise_sharing = True
|
82 |
+
self.shared_kv_compressed = shared_kv_compressed
|
83 |
+
|
84 |
+
self.out_proj = quant_noise(
|
85 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)
|
86 |
+
|
87 |
+
if add_bias_kv:
|
88 |
+
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
89 |
+
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
90 |
+
else:
|
91 |
+
self.bias_k = self.bias_v = None
|
92 |
+
|
93 |
+
self.add_zero_attn = add_zero_attn
|
94 |
+
|
95 |
+
self.reset_parameters()
|
96 |
+
|
97 |
+
if freeze_compress == 1:
|
98 |
+
self.compress_k.weight.requires_grad = False
|
99 |
+
if shared_kv_compressed == 0:
|
100 |
+
self.compress_v.weight.requires_grad = False
|
101 |
+
|
102 |
+
self.onnx_trace = False
|
103 |
+
|
104 |
+
def reset_parameters(self):
|
105 |
+
|
106 |
+
if self.qkv_same_dim:
|
107 |
+
# Empirically observed the convergence to be much better with
|
108 |
+
# the scaled initialization
|
109 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
110 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
111 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
112 |
+
if (
|
113 |
+
not self.layerwise_sharing
|
114 |
+
): # otherwise, we already initialize the parameters
|
115 |
+
nn.init.xavier_uniform_(self.compress_k.weight, gain=1 / math.sqrt(2))
|
116 |
+
if self.shared_kv_compressed == 0:
|
117 |
+
nn.init.xavier_uniform_(
|
118 |
+
self.compress_v.weight, gain=1 / math.sqrt(2)
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
122 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
123 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
124 |
+
if (
|
125 |
+
not self.layerwise_sharing
|
126 |
+
): # otherwise, we already initialize the parameters
|
127 |
+
nn.init.xavier_uniform_(self.compress_k.weight)
|
128 |
+
if self.shared_kv_compressed == 0:
|
129 |
+
nn.init.xavier_uniform_(self.compress_v.weight)
|
130 |
+
|
131 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
132 |
+
if self.out_proj.bias is not None:
|
133 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
134 |
+
if self.bias_k is not None:
|
135 |
+
nn.init.xavier_normal_(self.bias_k)
|
136 |
+
if self.bias_v is not None:
|
137 |
+
nn.init.xavier_normal_(self.bias_v)
|
138 |
+
|
139 |
+
def prepare_for_onnx_export_(self):
|
140 |
+
self.onnx_trace = True
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self,
|
144 |
+
query,
|
145 |
+
key: Optional[Tensor],
|
146 |
+
value: Optional[Tensor],
|
147 |
+
key_padding_mask: Optional[Tensor] = None,
|
148 |
+
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
149 |
+
output_attentions: bool = True,
|
150 |
+
need_weights: bool = True,
|
151 |
+
static_kv: bool = False,
|
152 |
+
attn_mask: Optional[Tensor] = None,
|
153 |
+
before_softmax: bool = False,
|
154 |
+
need_head_weights: bool = False,
|
155 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
156 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
157 |
+
"""Input shape: Time x Batch x Channel
|
158 |
+
|
159 |
+
Args:
|
160 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
161 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
162 |
+
padding elements are indicated by 1s.
|
163 |
+
need_weights (bool, optional): return the attention weights,
|
164 |
+
averaged over heads (default: False).
|
165 |
+
attn_mask (ByteTensor, optional): typically used to
|
166 |
+
implement causal attention, where the mask prevents the
|
167 |
+
attention from looking forward in time (default: None).
|
168 |
+
before_softmax (bool, optional): return the raw attention
|
169 |
+
weights and values before the attention softmax.
|
170 |
+
need_head_weights (bool, optional): return the attention
|
171 |
+
weights for each head. Implies *need_weights*. Default:
|
172 |
+
return the average attention weights over all heads.
|
173 |
+
"""
|
174 |
+
|
175 |
+
if need_head_weights:
|
176 |
+
need_weights = True
|
177 |
+
|
178 |
+
tgt_len, bsz, embed_dim = query.size()
|
179 |
+
assert embed_dim == self.embed_dim
|
180 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
181 |
+
|
182 |
+
if incremental_state is not None:
|
183 |
+
saved_state = self._get_input_buffer(incremental_state)
|
184 |
+
if saved_state is not None and "prev_key" in saved_state:
|
185 |
+
# previous time steps are cached - no need to recompute
|
186 |
+
# key and value if they are static
|
187 |
+
if static_kv:
|
188 |
+
assert self.encoder_decoder_attention and not self.self_attention
|
189 |
+
key = value = None
|
190 |
+
else:
|
191 |
+
saved_state = None
|
192 |
+
|
193 |
+
if self.self_attention:
|
194 |
+
q = self.q_proj(query)
|
195 |
+
|
196 |
+
k_input = query.permute(1, 2, 0).contiguous() # B * C * T
|
197 |
+
k_input = (
|
198 |
+
F.linear(k_input, self.compress_k.weight[:, 0:tgt_len])
|
199 |
+
.permute(2, 0, 1)
|
200 |
+
.contiguous()
|
201 |
+
)
|
202 |
+
k = self.k_proj(k_input)
|
203 |
+
|
204 |
+
v_input = query.permute(1, 2, 0).contiguous() # B * C * T
|
205 |
+
if self.shared_kv_compressed == 0:
|
206 |
+
v_input = (
|
207 |
+
F.linear(v_input, self.compress_v.weight[:, 0:tgt_len])
|
208 |
+
.permute(2, 0, 1)
|
209 |
+
.contiguous()
|
210 |
+
)
|
211 |
+
if self.shared_kv_compressed == 1: # use shared kv compressed linear layer
|
212 |
+
v_input = (
|
213 |
+
F.linear(v_input, self.compress_k.weight[:, 0:tgt_len])
|
214 |
+
.permute(2, 0, 1)
|
215 |
+
.contiguous()
|
216 |
+
)
|
217 |
+
v = self.v_proj(v_input)
|
218 |
+
elif self.encoder_decoder_attention:
|
219 |
+
# encoder-decoder attention
|
220 |
+
q = self.q_proj(query)
|
221 |
+
if key is None:
|
222 |
+
assert value is None
|
223 |
+
k = v = None
|
224 |
+
else:
|
225 |
+
k = self.k_proj(key)
|
226 |
+
v = self.v_proj(key)
|
227 |
+
|
228 |
+
else:
|
229 |
+
assert key is not None and value is not None
|
230 |
+
q = self.q_proj(query)
|
231 |
+
k = self.k_proj(key)
|
232 |
+
v = self.v_proj(value)
|
233 |
+
q *= self.scaling
|
234 |
+
|
235 |
+
if self.bias_k is not None:
|
236 |
+
assert self.bias_v is not None
|
237 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
238 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
239 |
+
if attn_mask is not None:
|
240 |
+
attn_mask = torch.cat(
|
241 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
242 |
+
)
|
243 |
+
if key_padding_mask is not None:
|
244 |
+
key_padding_mask = torch.cat(
|
245 |
+
[
|
246 |
+
key_padding_mask,
|
247 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
248 |
+
],
|
249 |
+
dim=1,
|
250 |
+
)
|
251 |
+
|
252 |
+
q = (
|
253 |
+
q.contiguous()
|
254 |
+
.view(tgt_len, bsz * self.num_heads, self.head_dim)
|
255 |
+
.transpose(0, 1)
|
256 |
+
)
|
257 |
+
if k is not None:
|
258 |
+
k = (
|
259 |
+
k.contiguous()
|
260 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
261 |
+
.transpose(0, 1)
|
262 |
+
)
|
263 |
+
if v is not None:
|
264 |
+
v = (
|
265 |
+
v.contiguous()
|
266 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
267 |
+
.transpose(0, 1)
|
268 |
+
)
|
269 |
+
|
270 |
+
if saved_state is not None:
|
271 |
+
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
272 |
+
if "prev_key" in saved_state:
|
273 |
+
_prev_key = saved_state["prev_key"]
|
274 |
+
assert _prev_key is not None
|
275 |
+
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
|
276 |
+
if static_kv:
|
277 |
+
k = prev_key
|
278 |
+
else:
|
279 |
+
assert k is not None
|
280 |
+
k = torch.cat([prev_key, k], dim=1)
|
281 |
+
if "prev_value" in saved_state:
|
282 |
+
_prev_value = saved_state["prev_value"]
|
283 |
+
assert _prev_value is not None
|
284 |
+
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
|
285 |
+
if static_kv:
|
286 |
+
v = prev_value
|
287 |
+
else:
|
288 |
+
assert v is not None
|
289 |
+
v = torch.cat([prev_value, v], dim=1)
|
290 |
+
prev_key_padding_mask: Optional[Tensor] = None
|
291 |
+
if "prev_key_padding_mask" in saved_state:
|
292 |
+
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
|
293 |
+
assert k is not None and v is not None
|
294 |
+
key_padding_mask = MultiheadLinearAttention._append_prev_key_padding_mask(
|
295 |
+
key_padding_mask=key_padding_mask,
|
296 |
+
prev_key_padding_mask=prev_key_padding_mask,
|
297 |
+
batch_size=bsz,
|
298 |
+
src_len=k.size(1),
|
299 |
+
static_kv=static_kv,
|
300 |
+
)
|
301 |
+
|
302 |
+
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
303 |
+
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
304 |
+
saved_state["prev_key_padding_mask"] = key_padding_mask
|
305 |
+
# In this branch incremental_state is never None
|
306 |
+
assert incremental_state is not None
|
307 |
+
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
308 |
+
assert k is not None
|
309 |
+
src_len = k.size(1)
|
310 |
+
|
311 |
+
if self.add_zero_attn:
|
312 |
+
assert v is not None
|
313 |
+
src_len += 1
|
314 |
+
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
315 |
+
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
316 |
+
if attn_mask is not None:
|
317 |
+
attn_mask = torch.cat(
|
318 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
319 |
+
)
|
320 |
+
|
321 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
322 |
+
attn_weights = MultiheadLinearAttention.apply_sparse_mask(
|
323 |
+
attn_weights, tgt_len, src_len, bsz
|
324 |
+
)
|
325 |
+
|
326 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
327 |
+
|
328 |
+
if attn_mask is not None:
|
329 |
+
attn_mask = attn_mask.unsqueeze(0)
|
330 |
+
if self.onnx_trace:
|
331 |
+
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
|
332 |
+
attn_weights += attn_mask
|
333 |
+
|
334 |
+
if before_softmax:
|
335 |
+
return attn_weights, v
|
336 |
+
|
337 |
+
attn_weights_float = utils.softmax(
|
338 |
+
attn_weights, dim=-1, onnx_trace=self.onnx_trace
|
339 |
+
)
|
340 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
341 |
+
attn_probs = F.dropout(
|
342 |
+
attn_weights,
|
343 |
+
p=self.dropout,
|
344 |
+
training=self.training,
|
345 |
+
)
|
346 |
+
assert v is not None
|
347 |
+
attn = torch.bmm(attn_probs, v)
|
348 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
349 |
+
if self.onnx_trace and attn.size(1) == 1:
|
350 |
+
# when ONNX tracing a single decoder step (sequence length == 1)
|
351 |
+
# the transpose is a no-op copy before view, thus unnecessary
|
352 |
+
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
|
353 |
+
else:
|
354 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
355 |
+
attn = self.out_proj(attn)
|
356 |
+
attn_weights: Optional[Tensor] = None
|
357 |
+
if output_attentions:
|
358 |
+
attn_weights = attn_weights_float.view(
|
359 |
+
bsz, self.num_heads, tgt_len, src_len
|
360 |
+
).transpose(1, 0)
|
361 |
+
if not need_head_weights:
|
362 |
+
# average attention weights over heads
|
363 |
+
attn_weights = attn_weights.mean(dim=0)
|
364 |
+
|
365 |
+
|
366 |
+
return attn, attn_weights
|
367 |
+
|
368 |
+
@staticmethod
|
369 |
+
def _append_prev_key_padding_mask(
|
370 |
+
key_padding_mask: Optional[Tensor],
|
371 |
+
prev_key_padding_mask: Optional[Tensor],
|
372 |
+
batch_size: int,
|
373 |
+
src_len: int,
|
374 |
+
static_kv: bool,
|
375 |
+
) -> Optional[Tensor]:
|
376 |
+
# saved key padding masks have shape (bsz, seq_len)
|
377 |
+
if prev_key_padding_mask is not None and static_kv:
|
378 |
+
new_key_padding_mask = prev_key_padding_mask
|
379 |
+
elif prev_key_padding_mask is not None and key_padding_mask is not None:
|
380 |
+
new_key_padding_mask = torch.cat(
|
381 |
+
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
|
382 |
+
)
|
383 |
+
# During incremental decoding, as the padding token enters and
|
384 |
+
# leaves the frame, there will be a time when prev or current
|
385 |
+
# is None
|
386 |
+
elif prev_key_padding_mask is not None:
|
387 |
+
filler = torch.zeros(
|
388 |
+
(batch_size, src_len - prev_key_padding_mask.size(1)),
|
389 |
+
device=prev_key_padding_mask.device,
|
390 |
+
)
|
391 |
+
new_key_padding_mask = torch.cat(
|
392 |
+
[prev_key_padding_mask.float(), filler.float()], dim=1
|
393 |
+
)
|
394 |
+
elif key_padding_mask is not None:
|
395 |
+
filler = torch.zeros(
|
396 |
+
(batch_size, src_len - key_padding_mask.size(1)),
|
397 |
+
device=key_padding_mask.device,
|
398 |
+
)
|
399 |
+
new_key_padding_mask = torch.cat(
|
400 |
+
[filler.float(), key_padding_mask.float()], dim=1
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
new_key_padding_mask = prev_key_padding_mask
|
404 |
+
return new_key_padding_mask
|
405 |
+
|
406 |
+
@torch.jit.export
|
407 |
+
def reorder_incremental_state(
|
408 |
+
self,
|
409 |
+
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
410 |
+
new_order: Tensor,
|
411 |
+
):
|
412 |
+
"""Reorder buffered internal state (for incremental generation)."""
|
413 |
+
input_buffer = self._get_input_buffer(incremental_state)
|
414 |
+
if input_buffer is not None:
|
415 |
+
for k in input_buffer.keys():
|
416 |
+
input_buffer_k = input_buffer[k]
|
417 |
+
if input_buffer_k is not None:
|
418 |
+
if self.encoder_decoder_attention and input_buffer_k.size(
|
419 |
+
0
|
420 |
+
) == new_order.size(0):
|
421 |
+
break
|
422 |
+
input_buffer[k] = input_buffer_k.index_select(0, new_order)
|
423 |
+
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
|
424 |
+
return incremental_state
|
425 |
+
|
426 |
+
def _get_input_buffer(
|
427 |
+
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
|
428 |
+
) -> Dict[str, Optional[Tensor]]:
|
429 |
+
result = self.get_incremental_state(incremental_state, "attn_state")
|
430 |
+
if result is not None:
|
431 |
+
return result
|
432 |
+
else:
|
433 |
+
empty_result: Dict[str, Optional[Tensor]] = {}
|
434 |
+
return empty_result
|
435 |
+
|
436 |
+
def _set_input_buffer(
|
437 |
+
self,
|
438 |
+
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
439 |
+
buffer: Dict[str, Optional[Tensor]],
|
440 |
+
):
|
441 |
+
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
442 |
+
|
443 |
+
def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int):
|
444 |
+
return attn_weights
|
445 |
+
|
446 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
447 |
+
prefix = name + "." if name != "" else ""
|
448 |
+
items_to_add = {}
|
449 |
+
keys_to_remove = []
|
450 |
+
for k in state_dict.keys():
|
451 |
+
if k.endswith(prefix + "in_proj_weight"):
|
452 |
+
# in_proj_weight used to be q + k + v with same dimensions
|
453 |
+
dim = int(state_dict[k].shape[0] / 3)
|
454 |
+
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
|
455 |
+
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
|
456 |
+
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
|
457 |
+
|
458 |
+
keys_to_remove.append(k)
|
459 |
+
|
460 |
+
k_bias = prefix + "in_proj_bias"
|
461 |
+
if k_bias in state_dict.keys():
|
462 |
+
dim = int(state_dict[k].shape[0] / 3)
|
463 |
+
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
|
464 |
+
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
|
465 |
+
dim : 2 * dim
|
466 |
+
]
|
467 |
+
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
|
468 |
+
|
469 |
+
keys_to_remove.append(prefix + "in_proj_bias")
|
470 |
+
|
471 |
+
for k in keys_to_remove:
|
472 |
+
del state_dict[k]
|
473 |
+
|
474 |
+
for key, value in items_to_add.items():
|
475 |
+
state_dict[key] = value
|
476 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa22b96e99d0bc331be0063c44cdd4ba7ebecb3aff6a2a1a15f7b7da06871758
|
3 |
+
size 581920077
|