lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6853
  • Answer: {'precision': 0.8719723183391004, 'recall': 0.9253365973072215, 'f1': 0.8978622327790974, 'number': 817}
  • Header: {'precision': 0.6224489795918368, 'recall': 0.5126050420168067, 'f1': 0.5622119815668203, 'number': 119}
  • Question: {'precision': 0.908411214953271, 'recall': 0.9025069637883009, 'f1': 0.9054494643688868, 'number': 1077}
  • Overall Precision: 0.8791
  • Overall Recall: 0.8887
  • Overall F1: 0.8839
  • Overall Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4358 10.53 200 1.0235 {'precision': 0.8292964244521338, 'recall': 0.8800489596083231, 'f1': 0.8539192399049881, 'number': 817} {'precision': 0.4657534246575342, 'recall': 0.5714285714285714, 'f1': 0.5132075471698114, 'number': 119} {'precision': 0.8694852941176471, 'recall': 0.8783658310120706, 'f1': 0.8739030023094689, 'number': 1077} 0.8248 0.8609 0.8425 0.7868
0.0513 21.05 400 1.2438 {'precision': 0.8439306358381503, 'recall': 0.8935128518971848, 'f1': 0.8680142687277052, 'number': 817} {'precision': 0.7045454545454546, 'recall': 0.5210084033613446, 'f1': 0.5990338164251209, 'number': 119} {'precision': 0.8937893789378938, 'recall': 0.9220055710306406, 'f1': 0.9076782449725778, 'number': 1077} 0.8648 0.8867 0.8756 0.8066
0.0139 31.58 600 1.3473 {'precision': 0.8443935926773455, 'recall': 0.9033047735618115, 'f1': 0.872856298048492, 'number': 817} {'precision': 0.6111111111111112, 'recall': 0.5546218487394958, 'f1': 0.5814977973568282, 'number': 119} {'precision': 0.8945945945945946, 'recall': 0.9220055710306406, 'f1': 0.9080932784636488, 'number': 1077} 0.8590 0.8927 0.8755 0.8101
0.0087 42.11 800 1.3432 {'precision': 0.8778718258766627, 'recall': 0.8886168910648715, 'f1': 0.8832116788321168, 'number': 817} {'precision': 0.5813953488372093, 'recall': 0.6302521008403361, 'f1': 0.6048387096774193, 'number': 119} {'precision': 0.9113573407202216, 'recall': 0.9164345403899722, 'f1': 0.9138888888888889, 'number': 1077} 0.8769 0.8882 0.8825 0.8161
0.0039 52.63 1000 1.5068 {'precision': 0.8678362573099415, 'recall': 0.9082007343941249, 'f1': 0.8875598086124402, 'number': 817} {'precision': 0.5564516129032258, 'recall': 0.5798319327731093, 'f1': 0.5679012345679013, 'number': 119} {'precision': 0.8998144712430427, 'recall': 0.9006499535747446, 'f1': 0.9002320185614848, 'number': 1077} 0.8658 0.8847 0.8752 0.8028
0.0028 63.16 1200 1.5721 {'precision': 0.8624277456647399, 'recall': 0.9130966952264382, 'f1': 0.8870392390011891, 'number': 817} {'precision': 0.6288659793814433, 'recall': 0.5126050420168067, 'f1': 0.5648148148148148, 'number': 119} {'precision': 0.9085714285714286, 'recall': 0.8857938718662952, 'f1': 0.8970380818053596, 'number': 1077} 0.8752 0.8748 0.8750 0.8145
0.0027 73.68 1400 1.5657 {'precision': 0.8695150115473441, 'recall': 0.9216646266829865, 'f1': 0.8948306595365418, 'number': 817} {'precision': 0.6310679611650486, 'recall': 0.5462184873949579, 'f1': 0.5855855855855856, 'number': 119} {'precision': 0.8944494995450409, 'recall': 0.9127205199628597, 'f1': 0.9034926470588234, 'number': 1077} 0.8709 0.8947 0.8826 0.8130
0.0012 84.21 1600 1.6853 {'precision': 0.8719723183391004, 'recall': 0.9253365973072215, 'f1': 0.8978622327790974, 'number': 817} {'precision': 0.6224489795918368, 'recall': 0.5126050420168067, 'f1': 0.5622119815668203, 'number': 119} {'precision': 0.908411214953271, 'recall': 0.9025069637883009, 'f1': 0.9054494643688868, 'number': 1077} 0.8791 0.8887 0.8839 0.8067
0.0007 94.74 1800 1.6321 {'precision': 0.8642117376294591, 'recall': 0.9192166462668299, 'f1': 0.8908659549228943, 'number': 817} {'precision': 0.5964912280701754, 'recall': 0.5714285714285714, 'f1': 0.5836909871244635, 'number': 119} {'precision': 0.9101964452759589, 'recall': 0.903435468895079, 'f1': 0.9068033550792172, 'number': 1077} 0.8733 0.8902 0.8817 0.8045
0.0004 105.26 2000 1.7732 {'precision': 0.8535469107551488, 'recall': 0.9130966952264382, 'f1': 0.8823181549379067, 'number': 817} {'precision': 0.5752212389380531, 'recall': 0.5462184873949579, 'f1': 0.5603448275862069, 'number': 119} {'precision': 0.8991825613079019, 'recall': 0.9192200557103064, 'f1': 0.909090909090909, 'number': 1077} 0.8625 0.8947 0.8783 0.7991
0.0003 115.79 2200 1.7988 {'precision': 0.8785714285714286, 'recall': 0.9033047735618115, 'f1': 0.8907664453832227, 'number': 817} {'precision': 0.6190476190476191, 'recall': 0.5462184873949579, 'f1': 0.5803571428571429, 'number': 119} {'precision': 0.8940639269406393, 'recall': 0.9090064995357474, 'f1': 0.9014732965009209, 'number': 1077} 0.8735 0.8852 0.8793 0.7950
0.0003 126.32 2400 1.8038 {'precision': 0.8584686774941995, 'recall': 0.9057527539779682, 'f1': 0.8814770696843359, 'number': 817} {'precision': 0.63, 'recall': 0.5294117647058824, 'f1': 0.5753424657534247, 'number': 119} {'precision': 0.8943533697632058, 'recall': 0.9117920148560817, 'f1': 0.9029885057471265, 'number': 1077} 0.8665 0.8867 0.8765 0.7953

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
25
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for T-Brockhouse/lilt-en-funsd

Finetuned
(47)
this model