metadata
widget:
- text: >-
sql_prompt: What is the monthly voice usage for each customer in the
Mumbai region? sql_context: CREATE TABLE customers (customer_id INT, name
VARCHAR(50), voice_usage_minutes FLOAT, region VARCHAR(50)); INSERT INTO
customers (customer_id, name, voice_usage_minutes, region) VALUES (1,
'Aarav Patel', 500, 'Mumbai'), (2, 'Priya Shah', 700, 'Mumbai');
example_title: Example1
- text: >-
sql_prompt: How many wheelchair accessible vehicles are there in the
'Train' mode of transport? sql_context: CREATE TABLE Vehicles(vehicle_id
INT, vehicle_type VARCHAR(20), mode_of_transport VARCHAR(20),
is_wheelchair_accessible BOOLEAN); INSERT INTO Vehicles(vehicle_id,
vehicle_type, mode_of_transport, is_wheelchair_accessible) VALUES (1,
'Train_Car', 'Train', TRUE), (2, 'Train_Engine', 'Train', FALSE), (3,
'Bus', 'Bus', TRUE);
example_title: Example2
- text: >-
sql_prompt: Which economic diversification efforts in the
'diversification' table have a higher budget than the average budget for
all economic diversification efforts in the 'budget' table? sql_context:
CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT);
CREATE TABLE budget (diversification_id INT, diversification_effort
VARCHAR(50), amount FLOAT);
example_title: Example3
language:
- en
datasets:
- gretelai/synthetic_text_to_sql
metrics:
- rouge
library_name: transformers
base_model: facebook/bart-large-cnn
model-index:
- name: SwastikM/bart-large-nl2sql
results:
- task:
type: text2text-generation
dataset:
name: gretelai/synthetic_text_to_sql
type: gretelai/synthetic_text_to_sql
split: train, test
metrics:
- name: ROUGE-1
type: rouge
value: 55.69
verified: true
- name: ROUGE-2
type: rouge
value: 42.99
verified: true
- name: ROUGE-L
type: rouge
value: 51.43
verified: true
- name: ROUGE-LSUM
type: rouge
value: 51.4
verified: true
github: https://github.com/swastikmaiti/SwastikM-bart-large-nl2sql.git
co2_eq_emissions:
emissions: 160
source: ML CO2 Impact https://mlco2.github.io/impact/#home)
training_type: fine-tuning
hardware_used: TESLA P100
tags:
- natural language
- SQL
- text2sql
- nl2sql
BART-LARGE-CNN fine-tuned on SYNTHETIC_TEXT_TO_SQL
Generate SQL query from Natural Language question with a SQL context.
Model Details
Model Description
BART from facebook/bart-large-cnn is fintuned on gretelai/synthetic_text_to_sql dataset to generate SQL from NL and SQL context
- Model type: BART
- Language(s) (NLP): English
- License: openrail
- Finetuned from model facebook/bart-large-cnn
- Dataset: gretelai/synthetic_text_to_sql
Intended uses & limitations
Addressing the power of LLM in fintuned downstream task. Implemented as a personal Project.
How to use
query_question_with_context = """sql_prompt: Which economic diversification efforts in
the 'diversification' table have a higher budget than the average budget for all economic diversification efforts in the 'budget' table?
sql_context: CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
budget (diversification_id INT, diversification_effort VARCHAR(50), amount FLOAT);"""
Use a pipeline as a high-level helper
from transformers import pipeline
sql_generator = pipeline("text2text-generation", model="SwastikM/bart-large-nl2sql")
sql = sql_generator(query_question_with_context)[0]['generated_text']
print(sql)
Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("SwastikM/bart-large-nl2sql")
model = AutoModelForSeq2SeqLM.from_pretrained("SwastikM/bart-large-nl2sql")
inputs = tokenizer(query_question_with_context, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(sql)
Training Details
Training Data
gretelai/synthetic_text_to_sql
Training Procedure
HuggingFace Accelerate with Training Loop.
Preprocessing
- Encoder Input: "sql_prompt: " + data['sql_prompt']+" sql_context: "+data['sql_context']
- Decoder Input: data['sql']
Training Hyperparameters
- Optimizer: AdamW
- lr: 2e-5
- decay: linear
- num_warmup_steps: 0
- batch_size: 8
- num_training_steps: 12500
Hardware
- GPU: P100
Citing Dataset and BaseModel
@software{gretel-synthetic-text-to-sql-2024,
author = {Meyer, Yev and Emadi, Marjan and Nathawani, Dhruv and Ramaswamy, Lipika and Boyd, Kendrick and Van Segbroeck, Maarten and Grossman, Matthew and Mlocek, Piotr and Newberry, Drew},
title = {{Synthetic-Text-To-SQL}: A synthetic dataset for training language models to generate SQL queries from natural language prompts},
month = {April},
year = {2024},
url = {https://huggingface.co./datasets/gretelai/synthetic-text-to-sql}
}
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Additional Information
- Github: Repository
Acknowledgment
Thanks to @AI at Meta for adding the Pre Trained Model. Thanks to @Gretel.ai for adding the datset.
Model Card Authors
Swastik Maiti