Edit model card

vit-base-patch16-224-in21k-leukemia

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Leukemia Dataset hosted on kaggle https://www.kaggle.com/datasets/andrewmvd/leukemia-classification. It achieves the following results on the evaluation set:

  • Train Loss: 0.3256
  • Train Accuracy: 0.8795
  • Validation Loss: 0.6907
  • Validation Accuracy: 0.6848
  • Epoch: 13

Model description

Google Vision Transormer (ViT). fine-tuned on the white blood cancer - Leukemia - dataset

Intended uses & limitations

This model was fine-tuned as a part of my project LeukemiaAI, a fully integrated pipeline to detect Leukemia.

Github Repo: https://github.com/MohammedSaLah-Eldeen/LeukemiaAI

Training hyperparameters

  • training_precision: mixed_float16
  • optimizer: { 'inner_optimizer': { 'module': 'keras.optimizers.experimental', 'class_name': 'SGD', 'config': { 'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': { 'module': 'keras.optimizers.schedules', 'class_name': 'CosineDecay', 'config': { 'initial_learning_rate': 0.001, 'decay_steps': 896, 'alpha': 0.0, 'name': None, 'warmup_target': None, 'warmup_steps': 0 }, 'registered_name': None }, 'momentum': 0.9, 'nesterov': False }, 'registered_name': None }, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000

}

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5007 0.7629 0.7206 0.6643 0
0.3958 0.8418 0.7137 0.6686 1
0.3578 0.8632 0.6998 0.6789 2
0.3377 0.8713 0.6899 0.6843 3
0.3274 0.8778 0.6869 0.6832 4
0.3261 0.8792 0.6880 0.6859 5
0.3257 0.8797 0.6906 0.6848 6
0.3255 0.8796 0.6896 0.6859 7
0.3256 0.8794 0.6901 0.6848 8
0.3258 0.8795 0.6867 0.6864 9
0.3258 0.8793 0.6896 0.6859 10
0.3256 0.8796 0.6871 0.6864 11
0.3255 0.8795 0.6897 0.6853 12
0.3256 0.8795 0.6907 0.6848 13

Framework versions

  • Transformers 4.35.0
  • TensorFlow 2.13.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SuperMaker/vit-base-patch16-224-in21k-leukemia

Finetuned
(1694)
this model